

 PHP Manual

 by:

 Mehdi Achour

 Friedhelm Betz

 Antony Dovgal

 Nuno Lopes

 Hannes Magnusson

 Georg Richter

 Damien Seguy

 Jakub Vrana

 And several others

 2024-04-30

 Edited By:

 Peter Cowburn

 1997-2024
 the PHP Documentation Group

	Copyright
	PHP Manual	Preface

	Getting Started	Introduction
	A simple tutorial

	Installation and Configuration	General Installation Considerations
	Installation on Unix systems
	Installation on macOS
	Installation on Windows systems
	Installation on Cloud Computing platforms
	FastCGI Process Manager (FPM)
	Installation of PECL extensions
	Problems?
	Runtime Configuration

	Language Reference	Basic syntax
	Types
	Variables
	Constants
	Expressions
	Operators
	Control Structures
	Functions
	Classes and Objects
	Namespaces
	Enumerations
	Errors
	Exceptions
	Fibers
	Generators
	Attributes
	References Explained
	Predefined Variables
	Predefined Exceptions
	Predefined Interfaces and Classes
	Predefined Attributes
	Context options and parameters
	Supported Protocols and Wrappers

	Security	Introduction
	General considerations
	Installed as CGI binary
	Installed as an Apache module
	Session Security
	Filesystem Security
	Database Security
	Error Reporting
	User Submitted Data
	Hiding PHP
	Keeping Current

	Features	HTTP authentication with PHP
	Cookies
	Sessions
	Dealing with XForms
	Handling file uploads
	Using remote files
	Connection handling
	Persistent Database Connections
	Command line usage — Using PHP from the command line
	Garbage Collection
	DTrace Dynamic Tracing

	Function Reference	Affecting PHP's Behaviour
	Audio Formats Manipulation
	Authentication Services
	Command Line Specific Extensions
	Compression and Archive Extensions
	Cryptography Extensions
	Database Extensions
	Date and Time Related Extensions
	File System Related Extensions
	Human Language and Character Encoding Support
	Image Processing and Generation
	Mail Related Extensions
	Mathematical Extensions
	Non-Text MIME Output
	Process Control Extensions
	Other Basic Extensions
	Other Services
	Search Engine Extensions
	Server Specific Extensions
	Session Extensions
	Text Processing
	Variable and Type Related Extensions
	Web Services
	Windows Only Extensions
	XML Manipulation
	GUI Extensions

	FAQ — FAQ: Frequently Asked Questions	General Information
	Mailing lists
	Obtaining PHP
	Database issues
	Installation
	Build Problems
	Using PHP
	Password Hashing — Safe Password Hashing
	PHP and HTML
	PHP and COM
	Miscellaneous Questions

	Appendices	History of PHP and Related Projects
	Migrating from PHP 8.2.x to PHP 8.3.x
	Migrating from PHP 8.1.x to PHP 8.2.x
	Migrating from PHP 8.0.x to PHP 8.1.x
	Migrating from PHP 7.4.x to PHP 8.0.x
	Migrating from PHP 7.3.x to PHP 7.4.x
	Migrating from PHP 7.2.x to PHP 7.3.x
	Migrating from PHP 7.1.x to PHP 7.2.x
	Migrating from PHP 7.0.x to PHP 7.1.x
	Migrating from PHP 5.6.x to PHP 7.0.x
	Migrating from PHP 5.5.x to PHP 5.6.x
	Debugging in PHP
	Configure options
	php.ini directives
	Extension List/Categorization
	List of Function Aliases
	List of Reserved Words
	List of Resource Types
	List of Available Filters
	List of Supported Socket Transports
	PHP type comparison tables
	List of Parser Tokens
	Userland Naming Guide
	About the manual
	Creative Commons Attribution 3.0
	Index listing
	Changelog

 Copyright

 Copyright © 1997 - 2024 by the PHP Documentation Group.
 This material may be distributed only subject to the terms and
 conditions set forth in the Creative Commons Attribution 3.0
 License or later. A copy of the Creative
 Commons Attribution 3.0 license is distributed with this manual.
 The latest version is presently available at
 http://creativecommons.org/licenses/by/3.0/.

 If you are interested in redistribution or republishing of this document
 in whole or in part, either modified or unmodified, and you have questions,
 please contact the Copyright holders at
 doc-license@lists.php.net.
 Note that this address is mapped to a publicly archived mailing list.

 PHP Manual

 	Preface

 Preface

 PHP, which stands for "PHP: Hypertext
 Preprocessor" is a widely-used open source general-purpose
 scripting language that is especially suited for web
 development and can be embedded into HTML. Its syntax draws
 upon C, Java, and Perl, and is easy to learn. The main goal of
 the language is to allow web developers to write dynamically
 generated web pages quickly, but you can do much more with PHP.

 This manual consists primarily of a
 function reference, but also contains a
 language reference, explanations
 of some of PHP's major features,
 and other supplemental
 information.

 You can download this manual in several formats at https://www.php.net/download-docs.php.
 More information about how this manual is developed can be found in the
 'About the manual' appendix. If you are
 interested in the history of PHP,
 visit the relevant appendix.

 Authors and Contributors

 We highlight the currently most active
people on the front page of the manual, but there are many more contributors who
currently help in our work or have provided a great amount of help to the project
in the past. There are a lot of unnamed people who help out with user
notes on manual pages, which continually get included in the references, the
work of whom we are also very thankful for. All of the lists provided below are in
alphabetical order.

 Authors and Editors

 The following contributors should be
recognized for the impact they have made and/or continue to make by adding
content to the manual:
 Bill Abt,
 Jouni Ahto,
 Alexander Aulbach,
 Stig Bakken,
 George Peter Banyard,
 Christoph M. Becker,
 Daniel Beckham,
 Nilgün Belma Bugüner,
 Jesus M. Castagnetto,
 Ron Chmara,
 Sean Coates,
 John Coggeshall,
 Simone Cortesi,
 Peter Cowburn,
 Daniel Egeberg,
 Markus Fischer,
 Wez Furlong,
 Sara Golemon,
 Rui Hirokawa,
 Brad House,
 Pierre-Alain Joye,
 Etienne Kneuss,
 Moriyoshi Koizumi,
 Rasmus Lerdorf,
 Andrew Lindeman,
 Stanislav Malyshev,
 Justin Martin,
 Rafael Martinez,
 Rick McGuire,
 Moacir de Oliveira Miranda Júnior,
 Kalle Sommer Nielsen,
 Yasuo Ohgaki,
 Philip Olson,
 Richard Quadling,
 Derick Rethans,
 Rob Richards,
 Sander Roobol,
 Egon Schmid,
 Thomas Schoefbeck,
 Sascha Schumann,
 Dan Scott,
 Masahiro Takagi,
 Yoshinari Takaoka,
 Yannick Torres,
 Michael Wallner,
 Lars Torben Wilson,
 Jim Winstead,
 Jeroen van Wolffelaar and
 Andrei Zmievski.

 The following contributors have done
significant work editing the manual:
 Stig Bakken,
 Gabor Hojtsy,
 Hartmut Holzgraefe,
 Philip Olson and
 Egon Schmid.

 User Note Maintainers

 The currently most active maintainers are:
 Daniel Brown,
 Nuno Lopes,
 Felipe Pena,
 Thiago Pojda and
 Maciek Sokolewicz.

 These people have also put a lot of effort
into managing user notes:
 Mehdi Achour,
 Daniel Beckham,
 Friedhelm Betz,
 Victor Boivie,
 Jesus M. Castagnetto,
 Nicolas Chaillan,
 Ron Chmara,
 Sean Coates,
 James Cox,
 Vincent Gevers,
 Sara Golemon,
 Zak Greant,
 Szabolcs Heilig,
 Oliver Hinckel,
 Hartmut Holzgraefe,
 Etienne Kneuss,
 Rasmus Lerdorf,
 Matthew Li,
 Andrew Lindeman,
 Aidan Lister,
 Hannes Magnusson,
 Maxim Maletsky,
 Bobby Matthis,
 James Moore,
 Philip Olson,
 Sebastian Picklum,
 Derick Rethans,
 Sander Roobol,
 Damien Seguy,
 Jason Sheets,
 Tom Sommer,
 Jani Taskinen,
 Yasuo Ohgaki,
 Jakub Vrana,
 Lars Torben Wilson,
 Jim Winstead,
 Jared Wyles and
 Jeroen van Wolffelaar.

 Getting Started

 	Introduction	What is PHP?
	What can PHP do?

	A simple tutorial	What do I need?
	Your first PHP-enabled page
	Something Useful
	Dealing with Forms
	What's next?

 Introduction

Table of Contents
	What is PHP?
	What can PHP do?

 What is PHP?

 PHP (recursive acronym for PHP: Hypertext
 Preprocessor) is a widely-used open source general-purpose
 scripting language that is especially suited for web
 development and can be embedded into HTML.

 Nice, but what does that mean? An example:

 Example #1 An introductory example

<!DOCTYPE html>
<html>
 <head>
 <title>Example</title>
 </head>
 <body>

 <?php
 echo "Hi, I'm a PHP script!";
 ?>

 </body>
</html>

 Instead of lots of commands to output HTML (as seen in C or Perl),
 PHP pages contain HTML with embedded code that does
 "something" (in this case, output "Hi, I'm a PHP script!").
 The PHP code is enclosed in special start and end processing
 instructions <?php and ?>
 that allow you to jump into and out of "PHP mode."

 What distinguishes PHP from something like client-side JavaScript
 is that the code is executed on the server, generating HTML which
 is then sent to the client. The client would receive
 the results of running that script, but would not know
 what the underlying code was. You can even configure your web server
 to process all your HTML files with PHP, and then there's really no
 way that users can tell what you have up your sleeve.

 The best part about using PHP is that it is extremely simple
 for a newcomer, but offers many advanced features for
 a professional programmer. Don't be afraid to read the long
 list of PHP's features. You can jump in, in a short time, and
 start writing simple scripts in a few hours.

 Although PHP's development is focused on server-side scripting,
 you can do much more with it. Read on, and see more in the
 What can PHP do? section,
 or go right to the introductory
 tutorial if you are only interested in web programming.

 What can PHP do?

 Anything. PHP is mainly focused on server-side scripting,
 so you can do anything any other CGI program can do, such
 as collect form data, generate dynamic page content, or
 send and receive cookies. But PHP can do much more.

 There are three main areas where PHP scripts are used.

 	

 Server-side scripting. This is the most traditional
 and main target field for PHP. You need three things
 to make this work: the PHP parser (CGI or server
 module), a web server and a web browser. You need to
 run the web server, with a connected PHP installation.
 You can access the PHP program output with a web browser,
 viewing the PHP page through the server. All these can
 run on your home machine if you are just experimenting
 with PHP programming. See the
 installation instructions
 section for more information.

 	

 Command line scripting. You can make a PHP script
 to run it without any server or browser.
 You only need the PHP parser to use it this way.
 This type of usage is ideal for scripts regularly
 executed using cron (on *nix or Linux) or Task Scheduler (on
 Windows). These scripts can also be used for simple text
 processing tasks. See the section about
 Command line usage of PHP
 for more information.

 	

 Writing desktop applications. PHP is probably
 not the very best language to create a desktop
 application with a graphical user interface, but if
 you know PHP very well, and would like to use some
 advanced PHP features in your client-side applications
 you can also use PHP-GTK to write such programs. You also
 have the ability to write cross-platform applications this
 way. PHP-GTK is an extension to PHP, not available in
 the main distribution. If you are interested
 in PHP-GTK, visit its
 own website.

 PHP can be used on all major operating systems, including
 Linux, many Unix variants (including HP-UX, Solaris and OpenBSD),
 Microsoft Windows, macOS, RISC OS, and probably others.
 PHP also has support for most of the web servers today. This
 includes Apache, IIS, and many others. And this includes any
 web server that can utilize the FastCGI PHP binary, like lighttpd
 and nginx. PHP works as either a module, or as a CGI processor.

 So with PHP, you have the freedom of choosing an operating
 system and a web server. Furthermore, you also have the choice
 of using procedural programming or object-oriented
 programming (OOP), or a mixture of them both.

 With PHP you are not limited to output HTML. PHP's abilities include
 outputting rich file types, such as images or PDF files, encrypting data,
 and sending emails. You can also output easily any text, such as JSON
 or XML. PHP can autogenerate these files, and save them in the
 file system, instead of printing it out, forming a server-side cache for
 your dynamic content.

 One of the strongest and most significant features in PHP is its
 support for a wide range of databases.
 Writing a database-enabled web page is incredibly simple using one of
 the database specific extensions (e.g., for mysql),
 or using an abstraction layer like PDO, or connect
 to any database supporting the Open Database Connection standard via the
 ODBC extension. Other databases may utilize
 cURL or sockets,
 like CouchDB.

 PHP also has support for talking to other services using protocols
 such as LDAP, IMAP, SNMP, NNTP, POP3, HTTP, COM (on Windows) and
 countless others. You can also open raw network sockets and
 interact using any other protocol. PHP has support for the WDDX
 complex data exchange between virtually all Web programming
 languages. Talking about interconnection, PHP has support for
 instantiation of Java objects and using them transparently
 as PHP objects.

 PHP has useful text processing features,
 which includes the Perl compatible regular expressions (PCRE),
 and many extensions and tools to parse and access XML documents.
 PHP standardizes all of the XML extensions on the solid base of libxml2,
 and extends the feature set adding SimpleXML,
 XMLReader and XMLWriter support.

 And many other interesting extensions exist, which are categorized both
 alphabetically and by category.
 And there are additional PECL extensions that may or may not be documented
 within the PHP manual itself, like XDebug.

 As you can see this page is not enough to list all
 the features and benefits PHP can offer. Read on in
 the sections about installing
 PHP, and see the function
 reference part for explanation of the extensions
 mentioned here.

 A simple tutorial

Table of Contents
	What do I need?
	Your first PHP-enabled page
	Something Useful
	Dealing with Forms
	What's next?

 Here we would like to show the very basics of PHP in a short, simple
 tutorial. This text only deals with dynamic web page creation with
 PHP, though PHP is not only capable of creating web pages. See
 the section titled What can PHP
 do for more information.

 PHP-enabled web pages are treated just like regular HTML pages and
 you can create and edit them the same way you normally create
 regular HTML pages.

 What do I need?

 In this tutorial we assume that your server has activated support
 for PHP and that all files ending in .php
 are handled by PHP. On most servers, this is the default extension
 for PHP files, but ask your server administrator to be sure. If
 your server supports PHP, then you do not need to do anything. Just
 create your .php files, put them in your
 web directory and the server will automatically parse them for you.
 There is no need to compile anything nor do you need to install
 any extra tools. Think of these PHP-enabled files as simple HTML
 files with a whole new family of magical tags that let you do all
 sorts of things.

 Let us say you want to save precious bandwidth and develop locally.
 In this case, you will want to install a web server, such as
 Apache, and of course
 PHP. You will most likely
 want to install a database as well, such as
 MySQL.

 You can either install these individually or choose a simpler way. Our
 manual has installation instructions for
 PHP (assuming you already have some web server set up). If
 you have problems with installing PHP yourself, we would suggest you ask
 your questions on our installation
 mailing list. If you choose to go on the simpler route, then
 locate a pre-configured package
 for your operating system, which automatically installs all of these
 with just a few mouse clicks. It is easy to setup a web server with PHP
 support on any operating system, including MacOSX, Linux and Windows.
 On Linux, you may find rpmfind and
 PBone helpful for
 locating RPMs. You may also want to visit apt-get to find packages for Debian.

 Your first PHP-enabled page

 Create a file named hello.php and put it
 in your web server's root directory (DOCUMENT_ROOT)
 with the following content:

 Example #1 Our first PHP script: hello.php

<!DOCTYPE html>
<html>
 <head>
 <title>PHP Test</title>
 </head>
 <body>
 <?php echo '<p>Hello World</p>'; ?>
 </body>
</html>

 Use your browser to access the file with your web server's URL, ending
 with the /hello.php file reference. When developing locally this
 URL will be something like http://localhost/hello.php
 or http://127.0.0.1/hello.php but this depends on the
 web server's configuration. If everything is configured correctly, this
 file will be parsed by PHP and the following output will be sent to
 your browser:

<!DOCTYPE html>
<html>
 <head>
 <title>PHP Test</title>
 </head>
 <body>
 <p>Hello World</p>
 </body>
</html>

 This program is extremely simple and you really did not need to use
 PHP to create a page like this. All it does is display:
 Hello World using the PHP echo
 statement. Note that the file does not need to be executable
 or special in any way. The server finds out that this file needs to be interpreted
 by PHP because you used the ".php" extension, which the server is configured
 to pass on to PHP. Think of this as a normal HTML file which happens to have
 a set of special tags available to you that do a lot of interesting things.

 If you tried this example and it did not output anything, it prompted
 for download, or you see the whole file as text, chances are that the
 server you are on does not have PHP enabled, or is not configured properly.
 Ask your administrator to enable it for you using the
 Installation chapter
 of the manual. If you are developing locally, also read the
 installation chapter to make sure everything is configured
 properly. Make sure that you access the file via http with the server
 providing you the output. If you just call up the file from your file
 system, then it will not be parsed by PHP. If the problems persist anyway,
 do not hesitate to use one of the many
 PHP support options.

 The point of the example is to show the special PHP tag format.
 In this example we used <?php to indicate the
 start of a PHP tag. Then we put the PHP statement and left PHP mode by
 adding the closing tag, ?>. You may jump in
 and out of PHP mode in an HTML file like this anywhere you want. For more
 details, read the manual section on the
 basic PHP syntax.

 Note:
 A Note on Line Feeds

 Line feeds have little meaning in HTML, however it is still a good idea
 to make your HTML look nice and clean by putting line feeds in. A
 linefeed that follows immediately after a closing
 ?> will be removed by PHP. This can be extremely
 useful when you are putting in many blocks of PHP or include files
 containing PHP that aren't supposed to output anything. At the same time
 it can be a bit confusing. You can put a space after the closing
 ?> to force a space and a line feed to be output,
 or you can put an explicit line feed in the last echo/print from within
 your PHP block.

 Note:
 A Note on Text Editors

 There are many text editors and Integrated Development Environments (IDEs)
 that you can use to create, edit and manage PHP files. A partial list of
 these tools is maintained at PHP Editors
 List. If you wish to recommend an editor, please visit the above
 page and ask the page maintainer to add the editor to the list. Having
 an editor with syntax highlighting can be helpful.

 Note:
 A Note on Word Processors

 Word processors such as StarOffice Writer, Microsoft Word and Abiword are
 not optimal for editing PHP files. If you wish to use one for this
 test script, you must ensure that you save the file as plain
 text or PHP will not be able to read and execute the script.

 Now that you have successfully created a working PHP script, it is
 time to create the most famous PHP script! Make a call to the
 phpinfo() function and you will see a lot of useful
 information about your system and setup such as available
 predefined variables,
 loaded PHP modules, and configuration
 settings. Take some time and review this important information.

 Example #2 Get system information from PHP

<?php phpinfo(); ?>

 Something Useful

 Let us do something more useful now. We are going to check
 what sort of browser the visitor is using.
 For that, we check the user agent string the browser
 sends as part of the HTTP request. This information is stored in a variable. Variables always start
 with a dollar-sign in PHP. The variable we are interested in right now
 is $_SERVER['HTTP_USER_AGENT'].

 Note:

 $_SERVER is a
 special reserved PHP variable that contains all web server information.
 It is known as a superglobal. See the related manual page on
 superglobals
 for more information.

 To display this variable, you can simply do:

 Example #1 Printing a variable (Array element)

<?php
echo $_SERVER['HTTP_USER_AGENT'];
?>

 A sample output of this script may be:

Mozilla/5.0 (Linux) Firefox/112.0

 There are many types of
 variables available in PHP. In the above example we printed an element
 from an Array variable.
 Arrays can be very useful.

 $_SERVER is just one variable that PHP automatically
 makes available to you. A list can be seen in the
 Reserved Variables section
 of the manual or you can get a complete list of them by looking at
 the output of the phpinfo() function used in the
 example in the previous section.

 You can put multiple PHP statements inside a PHP tag and create
 little blocks of code that do more than just a single echo.
 For example, if you want to check for Firefox you
 can do this:

 Example #2 Example using control
 structures and functions

<?php
if (str_contains($_SERVER['HTTP_USER_AGENT'], 'Firefox')) {
 echo 'You are using Firefox.';
}
?>

 A sample output of this script may be:

You are using Firefox.

 Here we introduce a couple of new concepts. We have an
 if statement.
 If you are familiar with the basic syntax used by the C
 language, this should look logical to you. Otherwise, you
 should probably pick up an introductory PHP book and read the first
 couple of chapters, or read the Language
 Reference part of the manual.

 The second concept we introduced was the str_contains()
 function call. str_contains() is a function built into
 PHP which determines if a given string contains another string. In this case we are
 looking for 'Firefox' (so-called needle) inside
 $_SERVER['HTTP_USER_AGENT'] (so-called haystack). If
 the needle is found inside the haystack, the function returns true. Otherwise, it
 returns false. If it returns true, the if expression evaluates to true
 and the code within its {braces} is executed. Otherwise, the code is not
 run. Feel free to create similar examples,
 with if,
 else, and other
 functions such as strtoupper() and
 strlen(). Each related manual page contains examples
 too. If you are unsure how to use functions, you will want to read both
 the manual page on how to read a
 function definition and the section about
 PHP functions.

 We can take this a step further and show how you can jump in and out
 of PHP mode even in the middle of a PHP block:

 Example #3 Mixing both HTML and PHP modes

<?php
if (str_contains($_SERVER['HTTP_USER_AGENT'], 'Firefox')) {
?>
<h3>str_contains() returned true</h3>
<p>You are using Firefox</p>
<?php
} else {
?>
<h3>str_contains() returned false</h3>
<p>You are not using Firefox</p>
<?php
}
?>

 A sample output of this script may be:

<h3>str_contains() returned true</h3>
<p>You are using Firefox</p>

 Instead of using a PHP echo statement to output something, we jumped out
 of PHP mode and just sent straight HTML. The important and powerful point
 to note here is that the logical flow of the script remains intact. Only
 one of the HTML blocks will end up getting sent to the viewer depending on
 the result of str_contains(). In other words, it depends on
 whether the string Firefox was found or not.

 Dealing with Forms

 One of the most powerful features of PHP is the way it handles HTML
 forms. The basic concept that is important to understand is that any
 form element will automatically be available to your PHP
 scripts. Please read the manual section on
 Variables from external
 sources for more information and examples on using forms
 with PHP. Here is an example HTML form:

 Example #1 A simple HTML form

<form action="action.php" method="post">
 <label for="name">Your name:</label>
 <input name="name" id="name" type="text">

 <label for="age">Your age:</label>
 <input name="age" id="age" type="number">

 <button type="submit">Submit</button>
</form>

 There is nothing special about this form. It is a straight HTML form
 with no special tags of any kind. When the user fills in this form
 and hits the submit button, the action.php page
 is called. In this file you would write something like this:

 Example #2 Printing data from our form

Hi <?php echo htmlspecialchars($_POST['name']); ?>.
You are <?php echo (int)$_POST['age']; ?> years old.

 A sample output of this script may be:

Hi Joe. You are 22 years old.

 Apart from the htmlspecialchars() and
 (int) parts, it should be obvious what this does.
 htmlspecialchars() makes sure any characters that are
 special in html are properly encoded so people can't inject HTML tags
 or Javascript into your page. For the age field, since we know it is a
 number, we can just convert
 it to an int which will automatically get rid of any
 stray characters. You can also have PHP do this for you automatically by
 using the filter extension.
 The $_POST['name'] and $_POST['age']
 variables are automatically set for you by PHP. Earlier we
 used the $_SERVER superglobal; above we just
 introduced the $_POST
 superglobal which contains all POST data. Notice how the
 method of our form is POST. If we used the
 method GET then our form information would live in
 the $_GET superglobal instead.
 You may also use the $_REQUEST
 superglobal, if you do not care about the source of your request data. It
 contains the merged information of GET, POST and COOKIE data.

 You can also deal with XForms input in PHP, although you will find yourself
 comfortable with the well supported HTML forms for quite some time.
 While working with XForms is not for beginners, you might be interested
 in them. We also have a short introduction
 to handling data received from XForms in our features section.

 What's next?

 With your new knowledge you should be able to understand most of
 the manual and also the various example scripts available in the
 example archives.

 To view various slide presentations that show more of what PHP can do,
 see the PHP Conference Material Site:
 http://talks.php.net/

 Installation and Configuration

 	General Installation Considerations
	Installation on Unix systems	Apache 2.x on Unix systems
	Nginx 1.4.x on Unix systems
	Lighttpd 1.4 on Unix systems
	LiteSpeed Web Server/OpenLiteSpeed Web Server on Unix systems
	CGI and command line setups
	OpenBSD installation notes
	Solaris specific installation tips
	Debian GNU/Linux installation notes

	Installation on macOS	Using Packages
	Using the bundled PHP prior to macOS Monterey
	Compiling PHP on macOS

	Installation on Windows systems	Install Requirements
	PECL
	PHP Installer Tools on Windows
	Recommended Configuration on Windows systems
	Manual PHP Installation on Windows
	Building from source
	Command Line PHP on Microsoft Windows
	Apache 2.x on Microsoft Windows
	Troubleshooting PHP on Windows

	Installation on Cloud Computing platforms	Azure App Services
	Amazon EC2
	DigitalOcean

	FastCGI Process Manager (FPM)	Installation
	Configuration

	Installation of PECL extensions	Introduction to PECL Installations
	Downloading PECL extensions
	Installing a PHP extension on Windows
	Compiling shared PECL extensions with the pecl command
	Compiling shared PECL extensions with phpize
	php-config
	Compiling PECL extensions statically into PHP

	Problems?	Read the FAQ
	Other problems
	Bug reports

	Runtime Configuration	The configuration file
	.user.ini files
	Where a configuration setting may be set
	How to change configuration settings

 General Installation Considerations

 Before starting the installation, first you need to know what do you
 want to use PHP for. There are three main fields you
 can use PHP, as described in the
 What can PHP do?
 section:

 	Websites and web applications (server-side scripting)

 	Command line scripting

 	Desktop (GUI) applications

 For the first and most common form, you need three things:
 PHP itself, a web server and a web browser. You
 probably already have a web browser, and depending on
 your operating system setup, you may also have a web
 server (e.g. Apache on Linux and macOS; IIS on Windows).
 You may also rent webspace at a company. This way, you
 don't need to set up anything on your own, only write
 your PHP scripts, upload it to the server you rent, and
 see the results in your browser.

 In case of setting up the server and PHP on your own, you have
 two choices for the method of connecting PHP to the
 server. For many servers PHP has a direct module
 interface (also called SAPI). These servers include
 Apache, Microsoft Internet Information Server,
 Netscape and iPlanet servers.
 If PHP has no
 module support for your web server, you can always
 use it as a CGI or FastCGI processor. This means you set up
 your server to use the CGI executable of
 PHP to process all PHP file requests on the server.

 If you are also interested in using PHP for command line
 scripting (e.g. write scripts autogenerating some images
 for you offline, or processing text files depending
 on some arguments you pass to them), you always need
 the command line executable. For more information, read
 the section about writing
 command line PHP applications. In this case,
 you need no server and no browser.

 With PHP you can also write desktop GUI applications
 using the PHP-GTK extension. This is a completely
 different approach than writing web pages, as you
 do not output any HTML, but manage windows and objects
 within them. For more information about PHP-GTK, please
 visit the site dedicated to
 this extension. PHP-GTK is not included in the
 official PHP distribution.

 From now on, this section deals with setting up PHP
 for web servers on Unix and Windows with server module
 interfaces and CGI executables. You will also find
 information on the command line executable in the
 following sections.

 PHP source code and binary distributions for Windows can be
 found at
 https://www.php.net/downloads.php.

 Installation on Unix systems

Table of Contents
	Apache 2.x on Unix systems
	Nginx 1.4.x on Unix systems
	Lighttpd 1.4 on Unix systems
	LiteSpeed Web Server/OpenLiteSpeed Web Server on Unix systems
	CGI and command line setups
	OpenBSD installation notes
	Solaris specific installation tips
	Debian GNU/Linux installation notes

 This section will guide you through the general configuration and
 installation of PHP on Unix systems. Be sure to investigate any
 sections specific to your platform or web server before you begin
 the process.

 As our manual outlines in the General
 Installation Considerations section, we are mainly dealing with
 web centric setups of PHP in this section, although we will cover
 setting up PHP for command line usage as well.

 There are several ways to install PHP for the Unix platform, either
 with a compile and configure process, or through various
 pre-packaged methods. This documentation is mainly focused around
 the process of compiling and configuring PHP. Many Unix like systems
 have some sort of package installation system. This can assist in
 setting up a standard configuration, but if you need to have a
 different set of features (such as a secure server, or a different
 database driver), you may need to build PHP and/or your web server.
 If you are unfamiliar with building and compiling your own software,
 it is worth checking to see whether somebody has already built a
 packaged version of PHP with the features you need.

 Prerequisite knowledge and software for compiling:

 	

 Basic Unix skills (being able to operate "make" and a C
 compiler)

 	

 An ANSI C compiler

 	

 A web server

 	

 Any module specific components (such as GD,
 PDF libs, etc.)

 When building directly from Git sources or after custom modifications you
 might also need:

 	

 autoconf:

 	

 PHP 7.3 and later: 2.68+

 	

 PHP 7.2: 2.64+

 	

 PHP 7.1 and earlier: 2.59+

 	

 automake: 1.4+

 	

 libtool: 1.4.x+ (except 1.4.2)

 	

 re2c:

 	

 PHP 8.3 and later: 1.0.3+

 	

 PHP 8.2 and earlier: 0.13.4+

 	

 bison:

 	

 PHP 7.4 and later: 3.0.0+

 	

 PHP 7.3 and earlier: 2.4+ (including Bison 3.x)

 The initial PHP setup and configuration process is controlled by the
 use of the command line options of the configure
 script. You could get a list of all available options along with short
 explanations running ./configure --help.
 Our manual documents the different options separately. You will
 find the core options in the appendix,
 while the different extension specific options are described on the
 reference pages.

 When PHP is configured, you are ready to build the module and/or
 executables. The command make should
 take care of this. If it fails and you can't figure out why, see
 the Problems section.

 Note:

 Some Unix systems (such as OpenBSD and SELinux) may disallow mapping pages
 both writable and executable for security reasons, what is called PaX
 MPROTECT or W^X violation protection. This kind of memory mapping is,
 however, necessary for PCRE's JIT support, so either PHP has to be built
 without PCRE's JIT support, or the
 binary has to be whitelisted by any means provided by the system.

 Note:

 Cross-compiling for ARM with the Android toolchain is currently not supported.

 Apache 2.x on Unix systems

 This section contains notes and hints specific to Apache 2.x installs
 of PHP on Unix systems.

 WarningWe do not recommend using a
threaded MPM in production with Apache 2. Use the prefork MPM, which is
the default MPM with Apache 2.0 and 2.2.
For information on why, read the related FAQ entry on using
Apache2 with a threaded MPM

 The Apache Documentation
 is the most authoritative source of information on the Apache 2.x server.
 More information about installation options for Apache may be found
 there.

 The most recent version of Apache HTTP Server may be obtained from
 Apache download site,
 and a fitting PHP version from the above mentioned places.
 This quick guide covers only the basics to get started with Apache 2.x
 and PHP. For more information read the
 Apache Documentation.
 The version numbers have been omitted here, to ensure the
 instructions are not incorrect. In the examples below, 'NN' should be
 replaced with the specific version of Apache being used.

 There are currently two versions of Apache 2.x - there's 2.4 and 2.2.
 While there are various reasons for choosing each, 2.4 is the current
 latest version, and the one that is recommended, if that option is
 available to you. However, the instructions here will work for either
 2.4 or 2.2. Note that Apache httpd 2.2 is officially End Of Life,
 and no new development or patches are being issued for it.

 	
 Obtain the Apache HTTP server from the location listed above,
 and unpack it:

tar -xzf httpd-2.x.NN.tar.gz

 	
 Likewise, obtain and unpack the PHP source:

tar -xzf php-NN.tar.gz

 	

 Build and install Apache. Consult the Apache install documentation for
 more details on building Apache.

cd httpd-2_x_NN
./configure --enable-so
make
make install

 	

 Now you have Apache 2.x.NN available under /usr/local/apache2,
 configured with loadable module support and the standard MPM prefork.
 To test the installation use your normal procedure for starting
 the Apache server, e.g.:

/usr/local/apache2/bin/apachectl start

 and stop the server to go on with the configuration for PHP:

/usr/local/apache2/bin/apachectl stop

 	

Now, configure and build PHP. This is where you customize PHP
with various options, like which extensions will be enabled. Run
./configure --help for a list of available options. In our example
we'll do a simple configure with Apache 2 and MySQL support.

If you built Apache from source, as described above, the below example will
match your path for apxs, but if you installed Apache some other way, you'll
need to adjust the path to apxs accordingly. Note that some distros may rename
apxs to apxs2.

cd ../php-NN
./configure --with-apxs2=/usr/local/apache2/bin/apxs --with-pdo-mysql
make
make install

 If you decide to change your configure options after installation,
 you'll need to re-run the configure, make, and make install steps.
 You only need to
 restart apache for the new module to take effect. A recompile of
 Apache is not needed.

 Note that unless told otherwise, 'make install' will also install PEAR,
 various PHP tools such as phpize, install the PHP CLI, and more.

 	

 Setup your php.ini

cp php.ini-development /usr/local/lib/php.ini

 You may edit your .ini file to set PHP options. If you prefer having
 php.ini in another location, use --with-config-file-path=/some/path in
 step 5.

 If you instead choose php.ini-production, be certain to read the list
 of changes within, as they affect how PHP behaves.

 	

 Edit your httpd.conf to load the PHP module. The path on the right hand
 side of the LoadModule statement must point to the path of the PHP
 module on your system. The make install from above may have already
 added this for you, but be sure to check.

 For PHP 8:

LoadModule php_module modules/libphp.so

 For PHP 7:

LoadModule php7_module modules/libphp7.so

 	

 Tell Apache to parse certain extensions as PHP. For example, let's have
 Apache parse .php files as PHP. Instead of only using the Apache AddType
 directive, we want to avoid potentially dangerous uploads and created
 files such as exploit.php.jpg from being executed as PHP. Using this
 example, you could have any extension(s) parse as PHP by simply adding
 them. We'll add .php to demonstrate.

<FilesMatch \.php$>
 SetHandler application/x-httpd-php
</FilesMatch>

Or, if we wanted to allow .php, .php2, .php3, .php4, .php5, .php6, and
 .phtml files to be executed as PHP, but nothing else, we'd use this:

<FilesMatch "\.ph(p[2-6]?|tml)$">
 SetHandler application/x-httpd-php
</FilesMatch>

 And to allow .phps files to be handled by the php source filter, and
 displayed as syntax-highlighted source code, use this:

<FilesMatch "\.phps$">
 SetHandler application/x-httpd-php-source
</FilesMatch>

 mod_rewrite may be used To allow any arbitrary .php file to be displayed
 as syntax-highlighted source code, without having to rename or copy it
 to a .phps file:

RewriteEngine On
RewriteRule (.*\.php)s$ $1 [H=application/x-httpd-php-source]

 The php source filter should not be enabled on production systems, where
 it may expose confidential or otherwise sensitive information embedded in
 source code.

 	

 Use your normal procedure for starting the Apache server, e.g.:

/usr/local/apache2/bin/apachectl start

 OR

service httpd restart

 Following the steps above you will have a running Apache2 web server with
 support for PHP as a SAPI module. Of course there are
 many more configuration options available Apache and PHP. For more
 information type ./configure --help in the corresponding
 source tree.

 Apache may be built multithreaded by selecting the
 worker MPM, rather than the standard
 prefork MPM, when Apache is built. This is done by
 adding the following option to the argument passed to ./configure, in
 step 3 above:

--with-mpm=worker

 This should not be undertaken without being aware of the consequences of
 this decision, and having at least a fair understanding of
 the implications. The Apache documentation
 regarding MPM-Modules
 discusses MPMs in a great deal more detail.

 Note:

 The Apache MultiViews
 FAQ discusses using multiviews with PHP.

 Note:

 To build a multithreaded version of Apache, the target system must support threads.
 In this case, PHP should also be built with
 Zend Thread Safety (ZTS). Under this configuration, not all extensions will be available.
 The recommended setup is to build Apache with the default
 prefork MPM-Module.

 Nginx 1.4.x on Unix systems

 This documentation will cover installing and configuring PHP with
 PHP-FPM for a Nginx 1.4.x HTTP server.

 This guide will assume that you have built Nginx from source and therefore
 all binaries and configuration files are located at
 /usr/local/nginx. If this is not the case and you have
 obtained Nginx through other means then please refer to the
 Nginx Wiki in order to translate
 this manual to your setup.

 This guide will cover the basics of configuring an Nginx server to
 process PHP applications and serve them on port 80, it is recommended
 that you study the Nginx and PHP-FPM documentation if you wish to
 optimise your setup past the scope of this documentation.

 Please note that throughout this documentation version numbers have been
 replaced with an 'x' to ensure this documentation stays correct in the future,
 please replace these as necessary with the corresponding version numbers.

 	

 It is recommended that you visit the Nginx Wiki
 install page
 in order to obtain and install Nginx on your system.

 	

 Obtain and unpack the PHP source:

tar zxf php-x.x.x

 	

 Configure and build PHP. This is where you customize PHP
 with various options, like which extensions will be enabled. Run
 ./configure --help for a list of available options. In our example
 we'll do a simple configure with PHP-FPM and MySQLi support.

cd ../php-x.x.x
./configure --enable-fpm --with-mysqli
make
sudo make install

 	

 Obtain and move configuration files to their correct locations

cp php.ini-development /usr/local/php/php.ini
cp /usr/local/etc/php-fpm.d/www.conf.default /usr/local/etc/php-fpm.d/www.conf
cp sapi/fpm/php-fpm /usr/local/bin

 	

 It is important that we prevent Nginx from passing requests to the
 PHP-FPM backend if the file does not exist, allowing us to prevent
 arbitrarily script injection.

 We can fix this by setting the
 cgi.fix_pathinfo
 directive to 0 within our php.ini file.

 Load up php.ini:

vim /usr/local/php/php.ini

 Locate cgi.fix_pathinfo= and modify it as follows:

cgi.fix_pathinfo=0

 	

 php-fpm.conf must be modified to specify that php-fpm must run as the user
 www-data and the group www-data before we can start the service:

vim /usr/local/etc/php-fpm.d/www.conf

 Find and modify the following:

; Unix user/group of processes
; Note: The user is mandatory. If the group is not set, the default user's group
; will be used.
user = www-data
group = www-data

 The php-fpm service can now be started:

/usr/local/bin/php-fpm

 This guide will not configure php-fpm any further, if you are interested
 in further configuring php-fpm then please consult the documentation.

 	

 Nginx must now be configured to support the processing of PHP applications:

vim /usr/local/nginx/conf/nginx.conf

 Modify the default location block to be aware it must attempt
 to serve .php files:

location / {
 root html;
 index index.php index.html index.htm;
}

 The next step is to ensure that .php files are passed to the
 PHP-FPM backend. Below the commented default PHP location block,
 enter the following:

location ~* \.php$ {
 fastcgi_index index.php;
 fastcgi_pass 127.0.0.1:9000;
 include fastcgi_params;
 fastcgi_param SCRIPT_FILENAME $document_root$fastcgi_script_name;
 fastcgi_param SCRIPT_NAME $fastcgi_script_name;
}

 Restart Nginx.

sudo /usr/local/nginx/sbin/nginx -s stop
sudo /usr/local/nginx/sbin/nginx

 	

 Create a test file

rm /usr/local/nginx/html/index.html
echo "<?php phpinfo(); ?>" >> /usr/local/nginx/html/index.php

 Now navigate to http://localhost. The phpinfo() should now be shown.

 Following the steps above you will have a running Nginx web server with
 support for PHP as an FPM SAPI module. Of course there are
 many more configuration options available for Nginx and PHP. For more
 information type ./configure --help in the corresponding
 source tree.

 Lighttpd 1.4 on Unix systems

 This section contains notes and hints specific to Lighttpd 1.4 installs
 of PHP on Unix systems.

 Please use the Lighttpd trac
 to learn how to install Lighttpd properly before continuing.

 FastCGI is the preferred SAPI to connect PHP and Lighttpd. FastCGI is
 automagically enabled in php-cgi.

 Letting Lighttpd spawn php processes

 To configure Lighttpd to connect to PHP and spawn FastCGI processes, edit
 lighttpd.conf. Sockets are preferred to connect to FastCGI processes on
 the local system.

 Example #1 Partial lighttpd.conf

server.modules += ("mod_fastcgi")

fastcgi.server = (".php" =>
 ((
 "socket" => "/tmp/php.socket",
 "bin-path" => "/usr/local/bin/php-cgi",
 "bin-environment" => (
 "PHP_FCGI_CHILDREN" => "16",
 "PHP_FCGI_MAX_REQUESTS" => "10000"
),
 "min-procs" => 1,
 "max-procs" => 1,
 "idle-timeout" => 20
))
)

 The bin-path directive allows lighttpd to spawn FastCGI processes dynamically.
 PHP will spawn children according to the PHP_FCGI_CHILDREN environment
 variable. The bin-environment directive sets the environment for the
 spawned processes. PHP will kill a child process after the number of
 requests specified by PHP_FCGI_MAX_REQUESTS is reached. The directives
 min-procs and max-procs should generally be avoided with PHP. PHP
 manages its own children and opcode caches like APC will only share among
 children managed by PHP. If min-procs is set to something greater than 1,
 the total number of php responders will be multiplied PHP_FCGI_CHILDREN
 (2 min-procs * 16 children gives 32 responders).

 Spawning with spawn-fcgi

 Lighttpd provides a program called spawn-fcgi to make the process of
 spawning FastCGI processes easier.

 Spawning php-cgi

 It is possible to spawn processes without spawn-fcgi, though a bit of
 heavy-lifting is required. Setting the PHP_FCGI_CHILDREN environment var
 controls how many children PHP will spawn to handle incoming requests.
 Setting PHP_FCGI_MAX_REQUESTS will determine how long (in requests) each
 child will live. Here's a simple bash script to help spawn php responders.

 Example #2 Spawning FastCGI Responders

#!/bin/sh

Location of the php-cgi binary
PHP=/usr/local/bin/php-cgi

PID File location
PHP_PID=/tmp/php.pid

Binding to an address
#FCGI_BIND_ADDRESS=10.0.1.1:10000
Binding to a domain socket
FCGI_BIND_ADDRESS=/tmp/php.sock

PHP_FCGI_CHILDREN=16
PHP_FCGI_MAX_REQUESTS=10000

env -i PHP_FCGI_CHILDREN=$PHP_FCGI_CHILDREN \
 PHP_FCGI_MAX_REQUESTS=$PHP_FCGI_MAX_REQUESTS \
 $PHP -b $FCGI_BIND_ADDRESS &

echo $! > "$PHP_PID"

 Connecting to remote FCGI instances

 FastCGI instances can be spawned on multiple remote machines in order to
 scale applications.

 Example #3 Connecting to remote php-fastcgi instances

fastcgi.server = (".php" =>
 (("host" => "10.0.0.2", "port" => 1030),
 ("host" => "10.0.0.3", "port" => 1030))
)

 LiteSpeed Web Server/OpenLiteSpeed Web Server on Unix systems

 LiteSpeed PHP is an optimized compilation of PHP built to work with LiteSpeed
 products through the LiteSpeed SAPI. LSPHP runs as its own process and has
 its own standalone binary, which can be used as a simple command line binary to execute
 PHP scripts from the command line.

 The LSAPI is a highly optimized API that allows communication between
 LiteSpeed and third party web engines. Its protocol is similar to FCGI, but is
 more efficient.

 This documentation will cover installing and configuring PHP with LSAPI
 for a LiteSpeed Web Server and OpenLiteSpeed Web Server.

 This guide will assume that either LSWS or OLS is installed with their
 default paths and flags. The default installation directory for both web
 servers is /usr/local/lsws and both can be run from the bin subdirectory.

 Please note that throughout this documentation, version numbers have been
 replaced with an x to ensure this documentation stays correct in the future,
 please replace these, as necessary, with the corresponding version numbers.

 	

 To obtain and install either LiteSpeed Web Server or OpenLiteSpeed Web Server, visit the
 LiteSpeed Web Server documentation
 install page
 or OpenLiteSpeed documentation
 install page.

 	

 Obtain and unpack the php source:

mkdir /home/php
cd /home/php
wget http://us1.php.net/get/php-x.x.x.tar.gz/from/this/mirror
tar -zxvf php-x.x.x.tar.gz
cd php-x.x.x

 	

 Configure and build PHP. This is where PHP can be customized with various options,
 such as which extensions will be enabled. Run ./configure --help for a list of available
 options. In the example, we'll use the default recommended configuration options for
 LiteSpeed Web Server:

./configure ... '--with-litespeed'
make
sudo make install

 	

 Checking The LSPHP Installation

 One of the simplest ways to check whether the installation of PHP was successful
 is to run the following code:

cd /usr/local/lsws/fcgi-bin/
./lsphp5 -v

 This should return information about the new PHP build:

PHP 5.6.17 (litespeed) (built: Mar 22 2016 11:34:19)
Copyright (c) 1997-2014 The PHP Group
Zend Engine v2.6.0, Copyright (c) 1998-2015 Zend Technologies

 Notice the litespeed in parenthesis. This means that the PHP binary has been
 built with LSAPI support.

 Following the steps above, LiteSpeed / OpenLiteSpeed Web Server should
 now be running with support for PHP as an SAPI extension. There are many more
 configuration options available for LSWS / OLS and PHP. For more information,
 check out the LiteSpeed documentation about
 PHP.

 Using LSPHP from the command line:

 LSPHP(LSAPI + PHP) command line mode is used to process PHP scripts running
 on a remote server that does not necessarily have a web server running. It is used
 to process PHP scripts residing on a local web server (separate). This setup is
 suitable for service scalability as PHP processing is offloaded to a remote server.

 Start lsphp from the command line on a remote server:
 LSPHP is an executable and can be started manually and bound to IPv4, IPv6, or
 Unix domain socket addresses with the command line option -b socket_address

 Examples:

 Have LSPHP bind to port 3000 on all IPv4 and IPv6 addresses:

/path/to/lsphp -b [::]:3000

 Have LSPHP bind to port 3000 on all IPv4 addresses:

/path/to/lsphp -b *:3000

 Have LSPHP bind to address 192.168.0.2:3000:

/path/to/lsphp -b 192.168.0.2:3000

 Have LSPHP accept requests on Unix domain socket /tmp/lsphp_manual.sock:

/path/to/lsphp -b /tmp/lsphp_manual.sock

 Environment variables can be added before the LSPHP executable:

PHP_LSAPI_MAX_REQUESTS=500 PHP_LSAPI_CHILDREN=35 /path/to/lsphp -b IP_address:port

 Currently LiteSpeed PHP can be used with LiteSpeed Web Server,
 OpenLiteSpeed Web Server, and Apache mod_lsapi. For steps on
 server-side configuration, visit the documentation pages for
 LiteSpeed Web Server
 and OpenLiteSpeed.

 LSPHP can be installed in several other ways as well.

 CentOS:
 On CentOS, LSPHP can be installed from the LiteSpeed Repository or the Remi
 Repository using RPM.

 Debian:
 On Debian, LSPHP can be installed from the LiteSpeed Repository using
 apt.

 cPanel:
 Visit the respective documentation page
 about how to install LSPHP with cPanel and LSWS/OLS using EasyApache 4.

 Plesk:
 Plesk can be used with LSPHP on CentOS, CloudLinux, Debian, and Ubuntu,
 for more details on this, visit the respective documentation page

 CGI and command line setups

 By default, PHP is built as both a CLI and
 CGI program, which can be used for CGI
 processing. If you are running a web server that PHP has module
 support for, you should generally go for that solution for
 performance reasons. However, the CGI version enables users to run
 different PHP-enabled pages under different user-ids.

 WarningA server deployed in CGI mode is open
to several possible vulnerabilities. Please read our
CGI security section to learn how to
defend yourself from such attacks.

 Testing

 If you have built PHP as a CGI program, you may test your build
 by typing make test. It is always a good idea
 to test your build. This way you may catch a problem with PHP on
 your platform early instead of having to struggle with it later.

 Using Variables

 Some server supplied
 environment variables are not defined in the
 current CGI/1.1 specification.
 Only the following variables are defined there: AUTH_TYPE,
 CONTENT_LENGTH, CONTENT_TYPE,
 GATEWAY_INTERFACE, PATH_INFO,
 PATH_TRANSLATED, QUERY_STRING,
 REMOTE_ADDR, REMOTE_HOST,
 REMOTE_IDENT, REMOTE_USER,
 REQUEST_METHOD, SCRIPT_NAME,
 SERVER_NAME, SERVER_PORT,
 SERVER_PROTOCOL, and SERVER_SOFTWARE.
 Everything else should be treated as 'vendor extensions'.

 OpenBSD installation notes

 This section contains notes and hints specific to installing
 PHP on OpenBSD.

 Using Binary Packages

 Using binary packages to install PHP on OpenBSD is the recommended
 and simplest method. The core package has been separated from the various
 modules, and each can be installed and removed independently from the others.
 The files you need can be found on your OpenBSD CD or on the FTP site.

 The main package you need to install is php,
 which contains the basic engine (plus fpm, gettext and iconv) and might be
 available in several versions to choose from. Next, take a look
 at the module packages, such as php-mysqli
 or php-imap. You need to use the phpxs
 command to activate and deactivate these modules in your php.ini.

 Example #1 OpenBSD Package Install Example

pkg_add php
pkg_add php-apache
pkg_add php-mysqli
 (install the PEAR libraries)
pkg_add pear

Follow the instructions shown with each package!

 (to remove packages)
pkg_delete php
pkg_delete php-apache
pkg_delete php-mysqli
pkg_delete pear

 Read the packages(7)
 manual page for more information about binary packages on OpenBSD.

 Using Ports

 You can also compile up PHP from source using the ports tree.
 However, this is only recommended for users familiar with OpenBSD. The PHP port
 is split into core and extensions. The
 extensions generate sub-packages for all of the supported
 PHP modules. If you find you do not want to create some of these modules,
 use the no_* FLAVOR. For example, to skip building
 the imap module, set the FLAVOR to no_imap.

 Common Problems

 	
 Apache and Nginx are no longer the default server on OpenBSD, but they can both be easily
 found in ports and packages. The new default server is also called 'httpd'.

 	
 The default install of httpd runs inside a
 chroot(2) jail, which will restrict PHP scripts to
 accessing files under /var/www. You will therefore need to create a
 /var/www/tmp directory for PHP session files to be stored, or use an
 alternative session backend. In addition, database sockets need to be placed inside the
 jail or listen on the localhost interface. If you use network functions,
 some files from /etc such as /etc/resolv.conf and
 /etc/services will need to be moved into /var/www/etc.
 The OpenBSD PEAR package automatically installs into the correct chroot directories.

 	

 The OpenBSD package for the gd extension
 requires Xorg to be installed. Unless already installed at base install by
 adding the xbase.tgz file set, this can be added at
 post-installation (see
 OpenBSD FAQ#4).

 Solaris specific installation tips

 This section contains notes and hints specific to installing
 PHP on Solaris systems.

 Required software

 Solaris installs often lack C compilers and their related tools.
 Read this FAQ
 for information on why using GNU versions for some of these
 tools is necessary.

 For unpacking the PHP distribution you need

 	

 tar

 	

 gzip or

 	

 bzip2

 For compiling PHP you need

 	

 gcc (recommended, other C compilers may work)

 	

 make

 	

 GNU sed

 For building extra extensions or hacking the code of PHP you might also need

 	

 re2c

 	

 bison

 	

 m4

 	

 autoconf

 	

 automake

 In addition, you will need to install (and possibly compile) any
 additional software specific to your configuration, such as Oracle
 or MySQL.

 Using Packages

 You can simplify the Solaris install process by using pkgadd to
 install most of your needed components. The Image Packaging System (IPS) for
 Solaris 11 Express also contains most of the required components
 for installation using the pkg command.

 Debian GNU/Linux installation notes

 This section contains notes and hints specific to installing
 PHP on Debian GNU/Linux.

 Warning

 Unofficial builds from third-parties are not supported here. Any bugs
 should be reported to the Debian team unless they can be reproduced using
 the latest builds from our download
 area.

 While the instructions for building PHP on Unix apply to Debian as well,
 this manual page contains specific information for other options, such as
 using either the apt or aptitude
 commands. This manual page uses these two commands interchangeably.

 Using APT

 First, note that other related packages may be desired like
 libapache-mod-php to integrate with Apache 2, and
 php-pear for PEAR.

 Second, before installing a package, it's wise to ensure the package list
 is up to date. Typically, this is done by running the command
 apt update.

 Example #1 Debian Install Example with Apache 2

apt install php-common libapache2-mod-php php-cli

 APT will automatically install the PHP module for Apache 2 and all of its
 dependencies, and then activate it. Apache should be restarted in order for
 the changes take place. For example:

 Example #2 Stopping and starting Apache once PHP is installed

/etc/init.d/apache2 stop
/etc/init.d/apache2 start

 Better control of configuration

 In the last section, PHP was installed with only core modules. It's
 very likely that additional modules will be desired, such as
 MySQL,
 cURL,
 GD,
 etc. These may also be installed via the apt command.

 Example #3 Methods for listing additional PHP packages

apt-cache search php
apt search php | grep -i mysql
aptitude search php

 The examples will show a lot of packages including several PHP specific ones
 like php-cgi, php-cli and php-dev. Determine which are needed
 and install them like any other with either apt
 or aptitude. And because Debian performs
 dependency checks, it'll prompt for those so for example to install
 MySQL and cURL:

 Example #4 Install PHP with MySQL, cURL

apt install php-mysql php-curl

 APT will automatically add the appropriate lines to the
 different php.ini related files like
 /etc/php/7.4/php.ini,
 /etc/php/7.4/conf.d/*.ini, etc. and depending on
 the extension will add entries similar to extension=foo.so.
 However, restarting the web server (like Apache) is required before these
 changes take affect.

 Common Problems

 	

 If the PHP scripts are not parsing via the web server, then it's
 likely that PHP was not added to the web server's configuration
 file, which on Debian may be /etc/apache2/apache2.conf
 or similar. See the Debian manual for further details.

 	

 If an extension was seemingly installed yet the functions are undefined,
 be sure that the appropriate ini file is being loaded and/or the web
 server was restarted after installation.

 	

 There are two basic commands for installing packages on Debian (and other
 linux variants): apt and aptitude.
 However, explaining the subtle differences between these commands goes
 beyond the scope of this manual.

 Installation on macOS

Table of Contents
	Using Packages
	Using the bundled PHP prior to macOS Monterey
	Compiling PHP on macOS

 This section contains notes and hints specific to installing PHP on macOS.
 PHP is bundled with macOS since macOS X (10.0.0) prior to macOS Monterey (12.0.0).
 Compiling is similar to the Unix installation guide.

 Using Packages

 There are a few pre-packaged and pre-compiled versions of PHP for
 macOS. This can help in setting up a standard
 configuration, but if you need to have a different set of features
 (such as a secure server, or a different database driver), you may
 need to build PHP and/or your web server yourself. If you are unfamiliar
 with building and compiling your own software, it's worth
 checking whether somebody has already built a packaged
 version of PHP with the features you need.

 The quickest way to install php on macOS is with homebrew:

 	

 install homebrew, by following the instructions at brew.sh

 	

 brew install php

 The following alternative resources also offer easy to install packages and
 precompiled binaries for PHP on Mac OS:

 	

 MacPorts:
 http://www.macports.org/

 	

 Liip:
 http://php-osx.liip.ch/
 (PHP 5.3 - PHP 7.3; deprecated)

 	

 Fink:
 http://www.finkproject.org/

 Using the bundled PHP prior to macOS Monterey

 PHP is bundled with macOS since macOS X (10.0.0) prior to macOS Monterey (12.0.0).
 Enabling PHP with the default web server requires uncommenting a few lines in the
 Apache configuration file httpd.conf whereas the
 CGI and/or CLI are enabled by
 default (easily accessible via the Terminal program).

 Enabling PHP using the instructions below is meant for quickly setting up
 a local development environment. It's highly recommended
 to always upgrade PHP to the newest version. Like most live software,
 newer versions are created to fix bugs and add features and PHP being is
 no different. See the appropriate macOS installation documentation for
 further details. The following instructions are geared towards a beginner
 with details provided for getting a default setup to work. All users are
 encouraged to compile, or install a new packaged version.

 The standard installation type is using mod_php, and enabling the bundled
 mod_php on macOS for the Apache web server (the default web server,
 that is accessible via System Preferences) involves the following steps:

 	

 Locate and open the Apache configuration file. By default, the location
 is as follows: /private/etc/apache2/httpd.conf

 Using Finder or Spotlight to find
 this file may prove difficult as by default it's private and owned by
 the root user.

 Note:

 One way to open this is by using a Unix based text editor in the
 Terminal, for example nano, and because the
 file is owned by root we'll use the sudo command
 to open it (as root) so for example type the following into the
 Terminal Application (after, it will prompt for
 a password):
 sudo nano /private/etc/apache2/httpd.conf

 Noteworthy nano commands: ^w (search),
 ^o (save), and ^x (exit) where
 ^ represents the Ctrl key.

 Note:

 Versions of Mac OS X prior to 10.5 were bundled with older versions of
 PHP and Apache. As such, the Apache configuration file on legacy
 machines may be /etc/httpd/httpd.conf.

 	

 With a text editor, uncomment the lines (by removing the #) that look
 similar to the following (these two lines are often not together,
 locate them both in the file):

LoadModule php5_module libexec/httpd/libphp5.so

AddModule mod_php5.c

 Notice the location/path. When building PHP in the future, the above
 files should be replaced or commented out.

 	

 Be sure the desired extensions will parse as PHP (examples: .php .html
 and .inc)

 Due to the following statement already existing in
 httpd.conf (as of Mac Panther), once PHP is
 enabled the .php files will automatically
 parse as PHP.

<IfModule mod_php5.c>
 # If php is turned on, we respect .php and .phps files.
 AddType application/x-httpd-php .php
 AddType application/x-httpd-php-source .phps

 # Since most users will want index.php to work we
 # also automatically enable index.php
 <IfModule mod_dir.c>
 DirectoryIndex index.html index.php
 </IfModule>
</IfModule>

 Note:

 Before Mac OS X 10.5 (Leopard), PHP 4 was bundled instead of PHP 5 in
 which case the above instructions will differ slightly by changing
 5's to 4's.

 	

 Be sure the DirectoryIndex loads the desired default index file

 This is also set in httpd.conf. Typically
 index.php and index.html are
 used. By default index.php is enabled because
 it's also in the PHP check shown above. Adjust accordingly.

 	

 Set the php.ini location or use the default

 A typical default location on macOS is
 /usr/local/php/php.ini and a call to
 phpinfo() will reveal this information.
 If a php.ini is not used, PHP will use all default values.
 See also the related FAQ on
 finding php.ini.

 	

 Locate or set the DocumentRoot

 This is the root directory for all the web files. Files in this directory
 are served from the web server so the PHP files will parse as PHP before
 outputting them to the browser. A typical default path is
 /Library/WebServer/Documents but this can be set to
 anything in httpd.conf. Alternatively, the default
 DocumentRoot for individual users is
 /Users/yourusername/Sites

 	

 Create a phpinfo() file

 The phpinfo() function will display information about PHP.
 Consider creating a file in the DocumentRoot with the following PHP code:

<?php phpinfo(); ?>

 	

 Restart Apache, and load the PHP file created above

 To restart, either execute sudo apachectl graceful in
 the shell or stop/start the "Personal Web Server" option in the
 macOS System Preferences. By default, loading local files in the browser
 will have an URL like so:
 http://localhost/info.php Or using the DocumentRoot
 in the user directory is another option and would end up looking like:
 http://localhost/~yourusername/info.php

 The CLI (or CGI in older versions) is
 appropriately named php and likely exists as
 /usr/bin/php. Open up the terminal, read the
 command line section of the PHP
 manual, and execute php -v to check the PHP version of
 this PHP binary. A call to phpinfo() will also reveal
 this information.

 Compiling PHP on macOS

 Use the Unix installation guide to compile
 PHP on macOS.

 Installation on Windows systems

Table of Contents
	Install Requirements
	PECL
	PHP Installer Tools on Windows
	Recommended Configuration on Windows systems
	Manual PHP Installation on Windows
	Building from source
	Command Line PHP on Microsoft Windows
	Apache 2.x on Microsoft Windows
	Troubleshooting PHP on Windows

 Installing PHP on modern Microsoft Windows systems and recommended configuration with common web servers.

 The Official releases of PHP on Windows are recommended for production use.
 However, you are welcome to build PHP from Source.
 You will need a Visual Studio environment.
 See Step by Step Build Instructions.

 	

 Using PHP on Windows Command line

 	

 Installing PHP on Azure App Services
 (aka Microsoft Azure, Windows Azure, or (Windows) Azure Web Apps).

 Install Requirements

 PHP requires at least Windows 2008/Vista.
 Either 32-Bit or 64-bit (AKA X86 or X64. PHP does not run on Windows RT/WOA/ARM).
 As of PHP 7.2.0 Windows 2008 and Vista are no longer supported.

 PHP requires the Visual C runtime (CRT). Many applications require that so it may already be installed.

 The Microsoft Visual C++ Redistributable for Visual Studio 2019 is suitable
 for all these PHP versions, see
 https://visualstudio.microsoft.com/downloads/.

 You MUST download the x86 CRT for PHP x86 builds and the x64 CRT for PHP x64 builds.

 If CRT is already installed, the installer will tell you that and not change anything.

 The CRT installer supports the /quiet and /norestart command-line switches, so you can script running it.

 PECL

 PECL extensions are pre-built for Windows and available from:
 http://windows.php.net/downloads/pecl/releases/

 Some extensions use features specific to some Unix systems and so are not available on Windows.
 Otherwise, all extensions are available for Windows.

 PHP Installer Tools on Windows

 PHP Install Tools

 XAMPP,
 WampServer and BitNami will setup PHP applications for use with Apache on Windows.

 Setting up and configuring Nginx on Windows requires a bit more configuration.
 See the Nginx documentation
 for additional setup help.

 Recommended Configuration on Windows systems

 OpCache

 It is highly recommended to enable OpCache.
 This extension is included with PHP for Windows.
 It compiles and optimizes PHP scripts and caches them in memory so that
 they aren't compiled every time the page is loaded.

 Set the php.ini to:

 Example #1 Recommended OpCache configuration

opcache.enable=On
opcache.enable_cli=On

 And restart the web server.

 For more info, see: OpCache Configuration

 WinCache

 It is recommended to use WinCache if using IIS, especially if in a shared
 web hosting environment or using networked file storage (NAS).
 Note that WinCache is no longer supported as of PHP 8.0.0.

 All PHP Applications automatically benefit from WinCache's file cache feature. File system operations are cached in memory.

 WinCache also can cache user objects in memory and share them between php.exe or php-cgi.exe processes (share objects between requests).

 Many major web applications have a plugin or extension or configuration option to make use of the WinCache user object cache.

 If you need high performance, you should use the object cache in your applications.

 See: http://pecl.php.net/package/WinCache to download a WinCache DLL (or tgz) to your PHP extensions directory (extensions_dir in your php.ini).

 Set the php.ini to:

 Example #2 Recommended WinCache configuration

extension=php_wincache.dll
wincache.fcenabled=1
wincache.ocenabled=1 ; removed as of wincache 2.0.0.0

 For more info, see:
 WinCache Configuration

 IIS Configuration

 In IIS Manager, Install FastCGI module and add a handler mapping for
 `.php` to the path to PHP-CGI.exe
 (not PHP.exe)

 You may use the APPCMD command line tool to script IIS configuration.

 Database

 You'll probably need a Database Server.
 Popular databases provide PHP extensions to use them.
 If your web site doesn't get a lot of traffic,
 you can run your database server on the same server as your web server.
 Many popular database servers run on Windows.

 PHP includes mysqli and pdo_mysql extensions.

 See https://dev.mysql.com/downloads/windows/

 Manual PHP Installation on Windows

 Choose Web Server

 IIS

 IIS is built in to Windows.
 On Windows Server, the IIS role can be added via the Server Manager. The CGI Role Feature needs to be included.
 On Windows Desktop, IIS has to be added via the Control Panel's Add/Remove Programs.
 The Microsoft documentation has detailed instructions.
 For desktop web apps and web-development, IIS/Express or PHP Desktop can also be used.

 Example #1 Command line to configure IIS and PHP

@echo off

REM download .ZIP file of PHP build from http://windows.php.net/downloads/

REM path to directory you decompressed PHP .ZIP file into (no trailing \)
set phppath=c:\php

REM Clear current PHP handlers
%windir%\system32\inetsrv\appcmd clear config /section:system.webServer/fastCGI
REM The following command will generate an error message if PHP is not installed. This can be ignored.
%windir%\system32\inetsrv\appcmd set config /section:system.webServer/handlers /-[name='PHP_via_FastCGI']

REM Set up the PHP handler
%windir%\system32\inetsrv\appcmd set config /section:system.webServer/fastCGI /+[fullPath='%phppath%\php-cgi.exe']
%windir%\system32\inetsrv\appcmd set config /section:system.webServer/handlers /+[name='PHP_via_FastCGI',path='*.php',verb='*',modules='FastCgiModule',scriptProcessor='%phppath%\php-cgi.exe',resourceType='Unspecified']
%windir%\system32\inetsrv\appcmd set config /section:system.webServer/handlers /accessPolicy:Read,Script

REM Configure FastCGI Variables
%windir%\system32\inetsrv\appcmd set config -section:system.webServer/fastCgi /[fullPath='%phppath%\php-cgi.exe'].instanceMaxRequests:10000
%windir%\system32\inetsrv\appcmd.exe set config -section:system.webServer/fastCgi /+"[fullPath='%phppath%\php-cgi.exe'].environmentVariables.[name='PHP_FCGI_MAX_REQUESTS',value='10000']"
%windir%\system32\inetsrv\appcmd.exe set config -section:system.webServer/fastCgi /+"[fullPath='%phppath%\php-cgi.exe'].environmentVariables.[name='PHPRC',value='%phppath%\php.ini']"

 Apache

 There are several builds of Apache2 for Windows.
 The Apache builds of ApacheLounge are recommended, but other options include XAMPP, WampServer and BitNami, which provide automatic installer tools.
 PHP can be used on Apache through mod_php or mod_fastcgi.
 mod_php requires a TS build of Apache built with same version of Visual C and same CPU (x86 or x64).

 Choose Build

 Windows builds can be downloaded from http://windows.php.net/download/.
 All builds are optimized (PGO), and QA and GA releases are thoroughly tested.

 There are 4 types of PHP builds:

 	
 Thread-Safe(TS) - for single process web servers, like Apache with mod_php

 	
 Non-Thread-Safe(NTS) - for IIS and other FastCGI web servers (Apache with mod_fastcgi) and recommended for command-line scripts

 	
 x86 - for 32-bits systems.

 	
 x64 - for 64-bits systems.

 Building from source

 This chapter teaches how to compile PHP from sources on Windows, using
 Microsoft's tools. To compile PHP with cygwin, please refer to Installation on Unix systems.

 See the Wiki documentation at:
 https://wiki.php.net/internals/windows/stepbystepbuild

 Command Line PHP on Microsoft Windows

 This section contains notes and hints specific to getting PHP running
 from the command line for Windows.

 Note:

 You should read the manual
 installation steps first!

 Getting PHP to run from the command line can be performed without making
 any changes to Windows.

C:\php\php.exe -f "C:\PHP Scripts\script.php" -- -arg1 -arg2 -arg3

 But there are some easy steps that can be followed to make this simpler.
 Some of these steps should already have been taken, but are repeated here
 to be able to provide a complete step-by-step sequence.

 Note:

 Both PATH and PATHEXT are important
 pre-existing system variables in Windows,
 and care should be taken to not overwrite either variable,
 only to add to them.

 	

 Append the location of the PHP executable (php.exe,
 php-win.exe or php-cli.exe
 depending upon your PHP version and display preferences) to the
 PATH environment variable. Read more about how to
 add your PHP directory to PATH in the corresponding FAQ entry.

 	

 Append the .PHP extension to the
 PATHEXT environment variable. This can be done
 at the same time as amending the PATH environment
 variable. Follow the same steps as described in the FAQ but amend the
 PATHEXT environment variable rather than the
 PATH environment variable.
 Note:

 The position in which you place the .PHP will
 determine which script or program is executed when there are matching
 filenames. For example, placing .PHP before
 .BAT will cause your script to run, rather than
 the batch file, if there is a batch file with the same name.

 	

 Associate the .PHP extension with a file type. This
 is done by running the following command:

assoc .php=phpfile

 	

 Associate the phpfile file type with the appropriate
 PHP executable. This is done by running the following command:

ftype phpfile="C:\php\php.exe" -f "%1" -- %~2

 Following these steps will allow PHP scripts to be run from any directory
 without the need to type the PHP executable or the .PHP
 extension and all parameters will be supplied to the script for processing.

 The example below details some of the registry changes that can be made manually.

 Example #1 Registry changes

Windows Registry Editor Version 5.00

[HKEY_LOCAL_MACHINE\SOFTWARE\Classes\.php]
@="phpfile"
"Content Type"="application/php"

[HKEY_LOCAL_MACHINE\SOFTWARE\Classes\phpfile]
@="PHP Script"
"EditFlags"=dword:00000000
"BrowserFlags"=dword:00000008
"AlwaysShowExt"=""

[HKEY_LOCAL_MACHINE\SOFTWARE\Classes\phpfile\DefaultIcon]
@="C:\\php\\php-win.exe,0"

[HKEY_LOCAL_MACHINE\SOFTWARE\Classes\phpfile\shell]
@="Open"

[HKEY_LOCAL_MACHINE\SOFTWARE\Classes\phpfile\shell\Open]
@="&Open"

[HKEY_LOCAL_MACHINE\SOFTWARE\Classes\phpfile\shell\Open\command]
@="\"C:\\php\\php.exe\" -f \"%1\" -- %~2"

 With these changes the same command can be written as:

"C:\PHP Scripts\script" -arg1 -arg2 -arg3

 or, if your "C:\PHP Scripts" path is in the
 PATH environment variable:

script -arg1 -arg2 -arg3

 Note:

 There is a small problem if you intend to use this technique and use your
 PHP scripts as a command line filter, like the example below:

dir | "C:\PHP Scripts\script" -arg1 -arg2 -arg3

 or

dir | script -arg1 -arg2 -arg3

 You may find that the script simply hangs and nothing is output.
 To get this operational, you need to make another registry change.

Windows Registry Editor Version 5.00

[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\policies\Explorer]
"InheritConsoleHandles"=dword:00000001

 Further information regarding this issue can be found in this Microsoft
 Knowledgebase Article : 321788.
 As of Windows 10, this setting seems to be reversed, making the default install of
 Windows 10 support inherited console handles automatically. This
 Microsoft forum post provides the explanation.

 Apache 2.x on Microsoft Windows

 This section contains notes and hints specific to Apache 2.x installs
 of PHP on Microsoft Windows systems.

 Note:

 Please read the manual
 installation steps first!

 It is strongly recommended to consult the
 Apache Documentation
 to get have a basic understanding of the Apache 2.x Server.
 Also consider reading the
 Windows specific notes
 for Apache 2.x before reading on here.

 Download the most recent version of
 Apache 2.x
 and a fitting PHP version. Follow the
 Manual Installation Steps
 and come back to go on with the integration of PHP and Apache.

 There are three ways to set up PHP to work with Apache 2.x on Windows.
 PHP can be run as a handler, as a CGI, or under FastCGI.

 Note: Remember that when adding
path values in the Apache configuration files on Windows, all backslashes
such as c:\directory\file.ext should be converted to
forward slashes: c:/directory/file.ext. A trailing
slash may also be necessary for directories.

 Installing as an Apache handler

 To load the PHP module for Apache 2.x, the following lines in the
 Apache httpd.conf configuration file must be inserted:

 Example #1 PHP and Apache 2.x as handler

before PHP 8.0.0 the name of the module was php7_module
LoadModule php_module "c:/php/php8apache2_4.dll"
<FilesMatch \.php$>
 SetHandler application/x-httpd-php
</FilesMatch>
configure the path to php.ini
PHPIniDir "C:/php"

 Note:

 The actual path to PHP must be substituted instead of
 C:/php/ in the above examples.
 Make sure that the file referenced in the LoadModule directive is at
 the specified location. Use php7apache2_4.dll
 for PHP 7, or php8apache2_4.dll for PHP 8.

 Running PHP as CGI

 It is strongly recommended to consult the
 Apache CGI documentation
 for a more complete understanding of running CGI on Apache.

 To run PHP as CGI, the php-cgi files will need to be placed in a
 directory designated as a CGI directory using the ScriptAlias directive.

 A #! line will need to be placed in the PHP files,
 which point to the location of the PHP binary:

 Example #2 PHP and Apache 2.x as CGI

#!C:/php/php.exe
<?php
 phpinfo();
?>

 WarningA server deployed in CGI mode is open
to several possible vulnerabilities. Please read our
CGI security section to learn how to
defend yourself from such attacks.

 Running PHP under FastCGI

 Running PHP under FastCGI has a number of advantages over running it as a
 CGI. Setting it up this way is fairly straightforward:

 Obtain mod_fcgid from
 https://www.apachelounge.com.
 Win32 binaries are available for download from that site.
 Install the module according to the instructions that will come with it.

 Configure your web server as shown below, taking care to adjust any paths
 to reflect how you have installed things on your particular system:

 Example #3 Configure Apache to run PHP as FastCGI

LoadModule fcgid_module modules/mod_fcgid.so
Where is your php.ini file?
FcgidInitialEnv PHPRC "c:/php"
<FilesMatch \.php$>
 SetHandler fcgid-script
</FilesMatch>
FcgidWrapper "c:/php/php-cgi.exe" .php

 Files with a .php extension will now be executed by the PHP FastCGI
 wrapper.

 Troubleshooting PHP on Windows

 Check Temp Directory Permissions

 	

 Right-click temp directory in File Explorer to get the permissions.

 	

 For IIS, check that user IIS_User has MODIFY permission.
 You can get the temporary directory from the configuration or php info.

 Installation on Cloud Computing platforms

Table of Contents
	Azure App Services
	Amazon EC2
	DigitalOcean

 PHP installs on the cloud. To the PHP cloud!

 Azure App Services

 PHP is frequently used on Azure App Services (aka Microsoft Azure, Windows Azure, Azure Web Apps).

 Azure App Services manages pools of Windows Web Servers to host your web application, as an alternative to managing your own web server on your own Azure Compute VMs or other servers.

 PHP is already enabled for your Azure App Services web site automatically. In the Azure Portal, select your web site, and you can choose which version of PHP to use. You may want to choose a newer version than the default.

 As such, PHP and extensions will run on Azure App Services just as they will on other Windows servers.

 Much of the knowledgebase is also portable, so see the Windows Troubleshooting Page too.

 However, the management interface for Azure App Services is different:

 	
 Azure portal: create, edit settings and delete web sites. Azure Portal

 	
 Kudu Dashboard: [your web site name].azurewebsites.net Then, the Kudu dashboard is https://[your web site name].scm.azurewebsites.net/. The Dashboard gives you access to some debugging capabilities, file management and site extensions. Site extensions are an Azure mechanism to add extra programs, like PHP preview builds, to your web site.

 	
 You can not use IIS Manager, Server Manager, or RDP.

 There is also a PHP SDK for programmatically using many Azure Services from your PHP code. See Azure SDK for PHP.

 For more information, see Azure PHP Developer Center

 WinCache

 WinCache is enabled by default on Azure App Services and it is recommended that you leave it enabled.

 If you install your own build of PHP, you should enable WinCache on that too.

 Custom PHP Build

 You may upload your own PHP build to your D:\Home (C:\ is NOT writable). Then in the Azure Portal, set SCRIPT_PROCESSOR for .php to the absolute path of the php-cgi.exe file in your build.

 Amazon EC2

 PHP installs on the EC2 cloud platform.

 See also the AWS SDK for PHP.

 DigitalOcean

 DigitalOcean offers the following platforms to get PHP installed,
 and running web application on its cloud-hosting infrastructure.

 	

 Cloudways:
 One-click deployment of major PHP applications:
 WordPress, Magento, Drupal, Laravel, and more.

 	

 Droplet:
 Virtual machine boxes and installing

 Lamp stack on a Linux server
 .

 	

 App Platform:
 Managed infrastructure to build, deploy, and scale apps quickly.
 Learn

 how to run PHP application on the App Platform
 .

 	

 Functions:
 Serverless platform that allows developers to run code without provisioning or managing servers.
 PHP is supported natively.
 Learn

 how to create serverless functions in PHP
 .

 FastCGI Process Manager (FPM)

Table of Contents
	Installation
	Configuration

 FPM (FastCGI Process Manager) is
a primary PHP FastCGI implementation containing some features (mostly) useful for heavy-loaded sites.

 These features include:

 	

 advanced process management with graceful stop/start;

 	

 pools that give ability to start workers with different
 uid/gid/chroot/environment, listening on different ports and using
 different php.ini (replaces safe_mode);

 	

 configurable stdout and stderr logging;

 	

 emergency restart in case of accidental opcode cache destruction;

 	

 accelerated upload support;

 	

 "slowlog" - logging scripts (not just their names, but their PHP
 backtraces too, using ptrace and similar things to read remote
 process' execute_data) that are executed unusually slow;

 	

 fastcgi_finish_request() - special function to finish
 request and flush all data while continuing to do something
 time-consuming (video converting, stats processing etc.);

 	

 dynamic/ondemand/static child spawning;

 	

 basic and extended status info (similar to Apache mod_status) with
 various formats like json, xml and openmetrics supported;

 	

 php.ini-based config file.

 Installation

 Compiling from sources

 In order to enable FPM in your PHP build you need to add --enable-fpm
 to your configure line.

 There are several other FPM-specific configure options (all of them optional):

 	

 --with-fpm-user - set FPM user (default - nobody).

 	

 --with-fpm-group - set FPM group (default - nobody).

 	

 --with-fpm-systemd - Activate systemd integration (default - no).

 	

 --with-fpm-acl - Use POSIX Access Control Lists (default - no).

 	

 --with-fpm-apparmor - Activate AppArmor integration (default - no).

 	

 --with-fpm-selinux - Activate SELinux integration (default - no).

 Changelog

 	Version
 	Description

 	8.2.0
 	
 The --with-fpm-selinux option was added.

 	8.0.0
 	
 The --with-fpm-apparmor option was added.

 Configuration

 FPM uses php.ini syntax for its configuration file - php-fpm.conf, and pool configuration files.

 List of global php-fpm.conf directives

 	
 pid
 string

 	

 Path to PID file. Default value: none.

 	
 error_log
 string

 	

 Path to error log file. Default value:
 #INSTALL_PREFIX#/log/php-fpm.log.
 If it's set to "syslog", log is sent to syslogd instead of being written in a local file.

 	
 log_level
 string

 	

 Error log level. Possible values: alert, error, warning, notice,
 debug. Default value: notice.

 	
 log_limit
 int

 	

 Log limit for the logged lines which allows to log messages longer than
 1024 characters without wrapping.
 Default value: 1024.
 Available as of PHP 7.3.0.

 	
 log_buffering
 bool

 	

 Experimental logging without extra buffering.
 Default value: yes.
 Available as of PHP 7.3.0.

 	
 syslog.facility
 string

 	

 used to specify what type of program is logging the message.
 Default value: daemon.

 	
 syslog.ident
 string

 	

 Prepended to every message.
 If you have multiple FPM instances running on the same server,
 you can change the default value which must suit common needs.
 Default value: php-fpm.

 	
 emergency_restart_threshold
 int

 	

 If this number of child processes exit with SIGSEGV or SIGBUS within
 the time interval set by emergency_restart_interval,
 then FPM will restart. A value of 0 means 'Off'. Default value: 0 (Off).

 	
 emergency_restart_interval
 mixed

 	

 Interval of time used by emergency_restart_interval to determine when
 a graceful restart will be initiated. This can be useful to work around
 accidental corruptions in an accelerator's shared memory.
 Available Units: s(econds), m(inutes), h(ours), or d(ays).
 Default Unit: seconds. Default value: 0 (Off).

 	
 process_control_timeout
 mixed

 	

 Time limit for child processes to wait for a reaction on signals from
 master. Available units: s(econds), m(inutes), h(ours), or d(ays)
 Default Unit: seconds. Default value: 0.

 	
 process.max
 int

 	

 The maximum number of processes FPM will fork. This has been design
 to control the global number of processes when using dynamic PM
 within a lot of pools. Use it with caution.
 Default value: 0.

 	
 process.priority
 int

 	

 Specify the nice(2) priority to apply to the master process (only if set).
 The value can vary from -19 (highest priority) to 20 (lower priority).
 Default value: not set.

 	
 daemonize
 bool

 	

 Send FPM to background. Set to 'no' to keep FPM in foreground for
 debugging. Default value: yes.

 	
 rlimit_files
 int

 	

 Set open file descriptor rlimit for the master process.
 Default value: system defined value.

 	
 rlimit_core
 int

 	

 Set max core size rlimit for the master process.
 Default value: 0.

 	
 events.mechanism
 string

 	

 Specify the event mechanism FPM will use.
 The following is available: select, pool, epoll, kqueue (*BSD), port (Solaris).
 Default value: not set (auto detection).

 	
 systemd_interval
 int

 	

 When FPM is build with systemd integration, specify the interval,
 in second, between health report notification to systemd.
 Set to 0 to disable.
 Default value: 10.

 List of pool directives

 With FPM you can run several pools of processes with different setting.
 These are settings that can be tweaked per pool.

 	
 listen
 string

 	

 The address on which to accept FastCGI requests. Valid syntaxes are:
 'ip.add.re.ss:port', 'port', '/path/to/unix/socket'. This option is
 mandatory for each pool.

 	
 listen.backlog
 int

 	

 Set listen(2) backlog. A value of -1 means maximum on BSD systems.
 Default value: -1 (FreeBSD or OpenBSD) or 511
 (Linux and other platforms).

 	
 listen.allowed_clients
 string

 	

 List of IPv4 or IPv6 addresses of FastCGI clients which are allowed to connect. Equivalent
 to the FCGI_WEB_SERVER_ADDRS environment variable in the original PHP FastCGI (5.2.2+).
 Makes sense only with a tcp listening socket. Each address must be separated by a comma.
 If this value is left blank, connections will be accepted from any ip address.
 Default value: not set (any ip address accepted).

 	
 listen.owner
 string

 	

 Set permissions for unix socket, if one is used. In Linux, read/write
 permissions must be set in order to allow connections from a web
 server. Many BSD-derived systems allow connections regardless of permissions.
 Default values: user and group are set as the running user, mode is set to 0660.

 	
 listen.group
 string

 	

 See listen.owner.

 	
 listen.mode
 string

 	

 See listen.owner.

 	
 listen.acl_users
 string

 	

 When POSIX Access Control Lists are supported you can set them using this option.
 When set, listen.owner and listen.group
 are ignored. Value is a comma separated list of user names.

 	
 listen.acl_groups
 string

 	

 See listen.acl_users.
 Value is a comma separated list of group names.

 	
 user
 string

 	

 Unix user of FPM processes. This option is mandatory.

 	
 group
 string

 	

 Unix group of FPM processes. If not set, the default user's group is
 used.

 	
 pm
 string

 	

 Choose how the process manager will control the number of child
 processes. Possible values: static, ondemand,
 dynamic.
 This option is mandatory.

 static - the number of child processes is fixed (pm.max_children).

 ondemand - the processes spawn on demand (when requested,
 as opposed to dynamic, where pm.start_servers are started
 when the service is started.

 dynamic - the number of child processes is set dynamically based on the
 following directives: pm.max_children, pm.start_servers,
 pm.min_spare_servers, pm.max_spare_servers.

 	
 pm.max_children
 int

 	

 The number of child processes to be created when pm is set to
 static and the maximum number of child processes to be created
 when pm is set to dynamic. This
 option is mandatory.

 This option sets the limit on the number of simultaneous requests that
 will be served. Equivalent to the ApacheMaxClients directive with
 mpm_prefork and to the PHP_FCGI_CHILDREN environment variable in the
 original PHP FastCGI.

 	
 pm.start_servers
 int

 	

 The number of child processes created on startup.
 Used only when pm is set to dynamic.
 Default Value: min_spare_servers + (max_spare_servers -
 min_spare_servers) / 2.

 	
 pm.min_spare_servers
 int

 	

 The desired minimum number of idle server processes. Used only when
 pm is set to dynamic. Also
 mandatory in this case.

 	
 pm.max_spare_servers
 int

 	

 The desired maximum number of idle server processes. Used only when
 pm is set to dynamic. Also
 mandatory in this case.

 	
 pm.max_spawn_rate
 int

 	

 The number of rate to spawn child processes at once. Used only when
 pm is set to dynamic.
 Default value: 32

 	
 pm.process_idle_timeout
 mixed

 	

 The number of seconds after which an idle process will be killed.
 Used only when pm is set to ondemand.
 Available units: s(econds)(default), m(inutes), h(ours), or d(ays).
 Default value: 10s.

 	
 pm.max_requests
 int

 	

 The number of requests each child process should execute before
 respawning. This can be useful to work around memory leaks in 3rd party
 libraries. For endless request processing specify '0'. Equivalent to
 PHP_FCGI_MAX_REQUESTS. Default value: 0.

 	
 pm.status_listen
 string

 	

 The address on which to accept FastCGI status request. This creates a new invisible pool
 that can handle requests independently. This is useful if the main pool is busy with long
 running requests because it is still possible to get the
 FPM status page before finishing the long running
 requests. The syntax is the same as for listen directive.
 Default value: none.

 	
 pm.status_path
 string

 	

 The URI to view the FPM status page. This value must
 start with a leading slash (/). If this value is not set, no URI will be recognized as
 a status page. Default value: none.

 	
 ping.path
 string

 	

 The ping URI to call the monitoring page of FPM. If this value is not
 set, no URI will be recognized as a ping page. This could be used to test
 from outside that FPM is alive and responding. Please note that the value must
 start with a leading slash (/).

 	
 ping.response
 string

 	

 This directive may be used to customize the response to a ping
 request. The response is formatted as text/plain with a 200 response code.
 Default value: pong.

 	
 process.priority
 int

 	

 Specify the nice(2) priority to apply to the worker process (only if set).
 The value can vary from -19 (highest priority) to 20 (lower priority).
 Default value: not set.

 	
 process.dumpable
 bool

 	

 Set the process dumpable flag (PR_SET_DUMPABLE prctl) even if the process user
 or group is different than the master process user. It allows to create process
 core dump and ptrace the process for the pool user.
 Default Value: no. Since PHP 7.0.29, 7.1.17 and 7.2.5.

 	
 prefix
 string

 	

 Specify prefix for path evaluation

 	
 request_terminate_timeout
 mixed

 	

 The timeout for serving a single request after which the worker
 process will be killed. This option should be used when the 'max_execution_time'
 ini option does not stop script execution for some reason. A value of '0' means
 'Off'. Available units: s(econds)(default), m(inutes), h(ours), or d(ays).
 Default value: 0.

 	
 request_terminate_timeout_track_finished
 bool

 	

 The timeout set by
 request_terminate_timeout is not engaged
 after a fastcgi_finish_request or
 when application has finished and internal shutdown functions are being called. This
 directive will enable timeout limit to be applied unconditionally even in such cases.
 Default value: no. Since PHP 7.3.0.

 	
 request_slowlog_timeout
 mixed

 	

 The timeout for serving a single request after which a PHP backtrace
 will be dumped to the 'slowlog' file. A value of '0' means 'Off'.
 Available units: s(econds)(default), m(inutes), h(ours), or d(ays).
 Default value: 0.

 	
 request_slowlog_trace_depth
 int

 	

 The depth of slowlog log stack trace.
 Default value: 20. Since PHP 7.2.0.

 	
 slowlog
 string

 	

 The log file for slow requests. Default value:
 #INSTALL_PREFIX#/log/php-fpm.log.slow.

 	
 rlimit_files
 int

 	

 Set open file descriptor rlimit for child processes in this pool. Default value: system defined value.

 	
 rlimit_core
 int

 	

 Set max core size rlimit for child processes in this pool. Possible Values: 'unlimited' or an integer greater or equal to 0.
 Default value: system defined value.

 	
 chroot
 string

 	

 Chroot to this directory at the start. This value must be defined as
 an absolute path. When this value is not set, chroot is not used.

 	
 chdir
 string

 	

 Chdir to this directory at the start. This value must be an absolute
 path. Default value: current directory or / when chroot.

 	
 catch_workers_output
 bool

 	

 Redirect worker stdout and stderr into main error log. If not set,
 stdout and stderr will be redirected to /dev/null according to FastCGI specs.
 Default value: no.

 	
 decorate_workers_output
 bool

 	

 Enable the output decoration for workers output when catch_workers_output is enabled.
 Default value: yes.
 Available as of PHP 7.3.0.

 	
 clear_env
 bool

 	

 Clear environment in FPM workers.
 Prevents arbitrary environment variables from reaching FPM worker processes
 by clearing the environment in workers before env vars specified in this
 pool configuration are added.
 Default value: Yes.

 	
 security.limit_extensions
 string

 	

 Limits the extensions of the main script FPM will allow to parse.
 This can prevent configuration mistakes on the web server side.
 You should only limit FPM to .php extensions to prevent malicious
 users to use other extensions to execute php code.
 Default value: .php .phar

 	
 apparmor_hat
 string

 	

 If AppArmor is enabled, it allows to change a hat.
 Default value: not set

 	
 access.log
 string

 	

 The access log file.
 Default value: not set

 	
 access.format
 string

 	

 The access log format.
 Default value: "%R - %u %t \"%m %r\" %s":

 Valid options

 	Placeholder
 	Description

 	
 %C

 	%CPU

 	
 %d

 	duration µs

 	
 %e

 	fastcgi env

 	
 %f

 	script

 	
 %l

 	content length

 	
 %m

 	method

 	
 %M

 	memory

 	
 %n

 	pool name

 	
 %o

 	header output

 	
 %p

 	PID

 	
 %q

 	query string

 	
 %Q

 	the glue between %q and %r

 	
 %r

 	request URI

 	
 %R

 	remote IP address

 	
 %s

 	status

 	
 %T

 	time

 	
 %t

 	time

 	
 %u

 	remote user

 It's possible to pass additional environment variables and update PHP settings of a certain pool.
 To do this, you need to add the following options to the pool configuration file.

 Example #1 Passing environment variables and PHP settings to a pool

env[HOSTNAME] = $HOSTNAME
env[PATH] = /usr/local/bin:/usr/bin:/bin
env[TMP] = /tmp
env[TMPDIR] = /tmp
env[TEMP] = /tmp

php_admin_value[sendmail_path] = /usr/sbin/sendmail -t -i -f www@my.domain.com
php_flag[display_errors] = off
php_admin_value[error_log] = /var/log/fpm-php.www.log
php_admin_flag[log_errors] = on
php_admin_value[memory_limit] = 32M

 PHP settings passed with php_value or
 php_flag will overwrite their previous value.
 Please note that defining
 disable_functions or
 disable_classes will
 not overwrite previously defined php.ini values,
 but will append the new value instead.

 Settings defined with php_admin_value and php_admin_flag
 cannot be overridden with ini_set().

 PHP settings can be set in the webserver configuration.

 Example #2 set PHP settings in nginx.conf

 set $php_value "pcre.backtrack_limit=424242";
set $php_value "$php_value \n pcre.recursion_limit=99999";
fastcgi_param PHP_VALUE $php_value;

fastcgi_param PHP_ADMIN_VALUE "open_basedir=/var/www/htdocs";

 Caution

 Because these settings are passed to php-fpm as fastcgi headers,
 php-fpm should not be bound to a worldwide accessible address.
 Otherwise, anyone could alter the PHP configuration options.
 See also
 listen.allowed_clients.

 Note:

 Pools are not a security mechanism, because they do not provide full
 separation; e.g. all pools would use a single OPcache instance.

 Installation of PECL extensions

Table of Contents
	Introduction to PECL Installations
	Downloading PECL extensions
	Installing a PHP extension on Windows
	Compiling shared PECL extensions with the pecl command
	Compiling shared PECL extensions with phpize
	php-config
	Compiling PECL extensions statically into PHP

 Introduction to PECL Installations

 PECL is a repository of PHP extensions that are made available via the
 PEAR
 packaging system.
 This section of the manual is intended to demonstrate how to obtain and
 install PECL extensions.

 These instructions assume /path/to/php/src/dir/ is the
 path to the PHP source distribution and that extname is
 the name of the PECL extension. Adjust accordingly.
 These instructions also assume a familiarity with the
 pear command.
 The information in the PEAR manual for the
 pear
 command also applies to the
 pecl
 command.

 A shared extension must be built, installed, and loaded to be useful.
 The methods described below provide various instructions on how to build and
 install the extensions, but they do not automatically load them.
 Extensions can be loaded by adding an
 extension
 directive to the php.ini file or through the use of the
 dl()
 function.

 When building PHP modules, it's important to have known-good versions of the
 required tools (autoconf, automake, libtool, etc.).
 See the
 Anonymous Git Instructions
 for details on the required tools and required versions.

 Downloading PECL extensions

 There are several options for downloading PECL extensions, such as:

 	

 The pecl install extname command downloads the
 extensions code automatically, so in this case, there is no need for a
 separate download.

 	

 https://pecl.php.net/

 The PECL website contains information about the different extensions that
 are offered by the PHP Development Team.
 The information available here includes: changelog, release notes,
 requirements, and other similar details.

 	

 pecl download extname

 PECL extensions that have releases listed on the PECL website are available
 for download and installation using the
 pecl command.
 Specific revisions may also be specified.

 	

 git

 Many PECL extensions reside on GitHub.

 	

 SVN

 Some PECL extensions also reside in SVN.
 A web-based view may be seen at
 https://svn.php.net/pecl/.
 To download straight from SVN,
 the following sequence of commands may be used:

$ svn checkout https://svn.php.net/repository/pecl/extname/trunk extname

 	

 Windows downloads

 The PHP project compiles and offers Windows DLLs for most PECL extensions
 on the package page.

 Installing a PHP extension on Windows

 There are two ways to load a PHP extension on Windows: either compile it into
 PHP, or load the DLL.
 Loading a pre-compiled extension is the easiest and preferred way.

 To load an extension, it has to be available as a
 .dll
 file on the system.
 All the extensions are automatically and periodically compiled by the PHP
 Group (see next section for the download).

 To compile an extension into PHP, please refer to the
 building from source
 documentation.

 To compile a standalone extension (aka a DLL file), please refer to the
 building from source
 documentation.
 If the DLL file is available neither with the PHP distribution nor in PECL,
 it may be necessary to compile it before the extension can be used.

 Where to find an extension?

 PHP extensions are usually called php_*.dll (where the
 star represents the name of the extension), and they are located under the
 PHP\ext
 folder.

 PHP ships with the extensions most useful to the majority of developers.
 They are called bundled extensions.

 However, if the bundled extensions do not provide the needed functionality,
 one extension that does may still be found in PECL.
 The PHP Extension Community Library (PECL) is a repository for PHP
 Extensions, providing a directory of all known extensions and hosting
 facilities for downloading and developing PHP extensions.

 If an extension has been developed for particular uses, it may be hosted on
 PECL so that others with the same needs can benefit from it.
 A nice side effect is that it's a good chance to receive feedback,
 (hopefully) thanks, bug reports and even fixes/patches.
 Before submitting an extension for hosting on PECL, please read
 PECL submit.

 Which extension to download?

 Many times, there will be several versions of each DLL available:

 	

 Different version numbers (at least the first two numbers should match)

 	

 Different thread safety settings

 	

 Different processor architecture (x86, x64, ...)

 	

 Different debugging settings

 	

 etc.

 Keep in mind that the extension settings should match all the settings of
 the PHP executable being used.
 The following PHP script will tell all about the PHP
 settings:

 Example #1
 phpinfo()
 call

<?php
phpinfo();
?>

 Or from the command line, run:

drive:\path\to\php\executable\php.exe -i

 Loading an extension

 The most common way to load a PHP extension is to include it in
 the php.ini configuration file.
 Please note that many extensions are already present in the php.ini and
 that the semicolon only needs to be removed to activate them.

 Note that, as of PHP 7.2.0, the extension name may be used
 instead of the extension's file name.
 As this is OS-independent and easier, especially for newcomers, it becomes
 the recommended way of specifying extensions to load.
 File names remain supported for compatibility with prior versions.

;extension=php_extname.dll

extension=php_extname.dll

; As of PHP 7.2.0, prefer:
extension=extname
zend_extension=another_extension

 However, some web servers are confusing because they do not use
 the php.ini located alongside the PHP executable.
 To find out where the actual php.ini resides, look for its path
 in phpinfo():

Configuration File (php.ini) Path C:\WINDOWS

Loaded Configuration File C:\Program Files\PHP\8.2\php.ini

 After activating an extension, save php.ini, restart the web server, and
 check phpinfo() again.
 The new extension should now have its own section.

 Resolving problems

 If the extension does not appear in phpinfo(),
 the logs should be checked to learn where the problem comes from.

 If PHP is being used from the command line (CLI), the extension loading
 error can be read directly on the screen.

 If PHP is being used with a web server, the location and format of the logs
 vary depending on the software.
 Please read the web server documentation to locate the logs, as it has
 nothing to do with PHP itself.

 Common problems are the location of the DLL and the DLLs it depends on, the
 value of the "extension_dir"
 setting inside php.ini and compile-time setting mismatches.

 If the problem lies in a compile-time setting mismatch, probably the DLL
 downloaded is not the right one.
 Try downloading the extension again with the proper settings.
 Again, phpinfo() can be of great help.

 Compiling shared PECL extensions with the pecl command

 PECL makes it easy to create shared PHP extensions.
 Using the
 pecl command,
 do the following:

$ pecl install extname

 This will download the source for extname,
 compile, and install extname.so into the
 extension_dir.
 extname.so
 may then be loaded via php.ini.

 By default, the pecl command will not install packages
 that are marked with the alpha or
 beta
 state.
 If no stable packages are available,
 a beta package may be installed using the following
 command:

$ pecl install extname-beta

 A specific version may also be installed using this variant:

$ pecl install extname-0.1

 Note:

 After enabling the extension in php.ini, restarting the web service is
 required for the changes to be picked up.

 Compiling shared PECL extensions with phpize

 Sometimes, using the pecl installer is not an option.
 This could be because there is a firewall or because the extension being
 installed is unavailable as a PECL-compatible package, such as unreleased
 extensions from git.
 If such an extension needs to be built, the lower-level build tools can be
 used to perform the build manually.

 The phpize command is used to prepare the build
 environment for a PHP extension.
 In the following sample, the sources for an extension are in a directory
 named extname:

$ cd extname
$ phpize
$./configure
$ make
make install

 A successful install will have created extname.so and
 put it into the PHP
 extensions directory.
 The php.ini will need to be adjusted, and an
 extension=extname.so
 line will need to be added before the extension can be used.

 If the system is missing the phpize command, and
 precompiled packages (like RPM's) are used, be sure to install also the
 appropriate development version of the PHP package as they often include the
 phpize
 command along with the proper header files to build PHP and its extensions.

 Execute phpize --help to display additional usage
 information.

 php-config

 php-config
 is a simple shell script for obtaining information about the installed PHP
 configuration.

 When the extensions are being compiled, if multiple PHP versions are
 installed, the installation for which to build can be specified by using the
 --with-php-config
 option during configuration, setting the path of the respective
 php-config
 script.

 The list of command line options provided by the
 php-config
 script can be queried anytime by running
 php-config
 with the -h switch:

Usage: /usr/local/bin/php-config [OPTION]
Options:
 --prefix [...]
 --includes [...]
 --ldflags [...]
 --libs [...]
 --extension-dir [...]
 --include-dir [...]
 --php-binary [...]
 --php-sapis [...]
 --configure-options [...]
 --version [...]
 --vernum [...]

 Command line options

 	Option
 	Description

 	--prefix
 	Directory prefix where PHP is installed, e.g. /usr/local

 	--includes
 	
 List of -I options with all include files

 	--ldflags
 	
 LD
 flags which PHP was compiled with

 	--libs
 	Extra libraries which PHP was compiled with

 	--extension-dir
 	Directory where extensions are searched by default

 	--include-dir
 	
 Directory prefix where header files are installed by default

 	--php-binary
 	Full path to php CLI or CGI binary

 	--php-sapis
 	Show all SAPI modules available

 	--configure-options
 	
 Configure options to recreate configuration of current PHP installation

 	--version
 	PHP version

 	--vernum
 	PHP version as integer

 Compiling PECL extensions statically into PHP

 It may be necessary to build a PECL extension statically into the PHP binary.
 To do this, the extension source will need to be placed under the
 /path/to/php/src/dir/ext/
 directory, and the PHP build system will be required to regenerate its
 configure script.

$ cd /path/to/php/src/dir/ext
$ pecl download extname
$ gzip -d < extname.tgz | tar -xvf -
$ mv extname-x.x.x extname

 This will result in the following directory:

 /path/to/php/src/dir/ext/extname

 From here, PHP needs to be forced to rebuild the configure script, and then
 it can be built as normal:

$ cd /path/to/php/src/dir

$ rm configure

$./buildconf --force

$./configure --help

$./configure --with-extname --enable-someotherext --with-foobar

$ make

$ make install

 Note:

 To run the buildconf script, the
 autoconf
 2.68
 and
 automake
 1.4+
 will be needed.
 Newer versions of autoconf may work but are not
 supported.

 Whether
 --enable-extname
 or
 --with-extname
 is used depends on the extension.
 Typically, an extension that does not require external libraries uses
 --enable.
 To be sure, run the following after buildconf:

$./configure --help | grep extname

 Problems?

Table of Contents
	Read the FAQ
	Other problems
	Bug reports

 Read the FAQ

 Some problems are more common than others. The most
 common ones are listed in the PHP
 FAQ, part of this manual.

 Other problems

 If you are still stuck, someone on the PHP installation mailing list may be
 able to help you. You should check out the archive first, in case
 someone already answered someone else who had the same problem as
 you. The archives are available from the support page on https://www.php.net/support.php. To subscribe to the PHP installation
 mailing list, send an empty mail to php-install+subscribe@lists.php.net.
 The mailing list address is php-install@lists.php.net.

 If you want to get help on the mailing list, please try to be
 precise and give the necessary details about your environment
 (which operating system, what PHP version, what web server, if
 you are running PHP as CGI or a server module, etc.), and
 preferably enough code to make others able to reproduce and test
 your problem.

 Bug reports

 If you think you have found a bug in PHP, please report it. The
 PHP developers probably don't know about it, and unless you
 report it, chances are it won't be fixed. You can report bugs
 using the bug-tracking system at https://github.com/php/php-src/issues. Please do not
 send bug reports in mailing list or personal letters. The
 bug system is also suitable to submit feature requests.

 Read the How to report a bug
 document before submitting any bug reports!

 Runtime Configuration

Table of Contents
	The configuration file
	.user.ini files
	Where a configuration setting may be set
	How to change configuration settings

 The configuration file

 The configuration file (php.ini)
 is read when PHP starts up. For the server module versions of PHP,
 this happens only once when the web server is started. For the
 CGI and CLI versions, it happens on
 every invocation.

 php.ini is searched for in these locations (in order):

 	

 SAPI module specific location (PHPIniDir directive
 in Apache 2, -c command line option in CGI and CLI)

 	

 The PHPRC environment variable.

 	

 The location of the php.ini file
 can be set for different versions of PHP. The root of the registry keys depends on 32- or 64-bitness of the installed OS and PHP.
 For 32-bit PHP on a 32-bit OS or a 64-bit PHP on a 64-bit OS use [(HKEY_LOCAL_MACHINE\SOFTWARE\PHP] for 32-bit version of PHP on a 64-bit OS use [HKEY_LOCAL_MACHINE\SOFTWARE\WOW6432Node\PHP]] instead.
 For same bitness installation the following registry keys
 are examined in order:
 [HKEY_LOCAL_MACHINE\SOFTWARE\PHP\x.y.z],
 [HKEY_LOCAL_MACHINE\SOFTWARE\PHP\x.y] and
 [HKEY_LOCAL_MACHINE\SOFTWARE\PHP\x], where
 x, y and z mean the PHP major, minor and release versions.
 For 32 bit versions of PHP on a 64 bit OS the following registry keys are examined in order:
 [HKEY_LOCAL_MACHINE\SOFTWARE\WOW6421Node\PHP\x.y.z],
 [HKEY_LOCAL_MACHINE\SOFTWARE\WOW6421Node\PHP\x.y] and
 [HKEY_LOCAL_MACHINE\SOFTWARE\WOW6421Node\PHP\x], where
 x, y and z mean the PHP major, minor and release versions.
 If there is a
 value for IniFilePath in any of these keys, the first
 one found will be used as the location of the php.ini
 (Windows only).

 	

 [HKEY_LOCAL_MACHINE\SOFTWARE\PHP] or
 [HKEY_LOCAL_MACHINE\SOFTWARE\WOW6432Node\PHP], value of
 IniFilePath (Windows only).

 	

 Current working directory (except CLI).

 	

 The web server's directory (for SAPI modules), or directory of PHP
 (otherwise in Windows).

 	

 Windows directory (C:\windows
 or C:\winnt) (for Windows), or
 --with-config-file-path compile time option.

 If php-SAPI.ini exists (where SAPI is the SAPI in use,
 so, for example, php-cli.ini or
 php-apache.ini), it is used instead of php.ini.
 The SAPI name can be determined with php_sapi_name().

 Note:

 The Apache web server changes the directory to root at startup, causing
 PHP to attempt to read php.ini from the root filesystem if it exists.

 Using environment variables can be used in php.ini as shown below.

 Example #1 php.ini Environment Variables

; PHP_MEMORY_LIMIT is taken from environment
memory_limit = ${PHP_MEMORY_LIMIT}

 The php.ini directives handled by extensions are documented
 on the respective pages of the extensions themselves. A list of
 the core directives is available in the appendix. Not all
 PHP directives are necessarily documented in this manual: for a complete list
 of directives available in your PHP version, please read your well commented
 php.ini file. Alternatively, you may find
 the latest php.ini from Git
 helpful too.

 Example #2 php.ini example

; any text on a line after an unquoted semicolon (;) is ignored
[php] ; section markers (text within square brackets) are also ignored
; Boolean values can be set to either:
; true, on, yes
; or false, off, no, none
register_globals = off
track_errors = yes

; you can enclose strings in double-quotes
include_path = ".:/usr/local/lib/php"

; backslashes are treated the same as any other character
include_path = ".;c:\php\lib"

 It is possible to refer to existing .ini variables from
 within .ini files. Example: open_basedir = ${open_basedir}
 ":/new/dir".

 Scan directories

 It is possible to configure PHP to scan for .ini files in a directory
 after reading php.ini. This can be done at compile time by setting the
 --with-config-file-scan-dir option.
 The scan directory can then be overridden at run time
 by setting the PHP_INI_SCAN_DIR environment variable.

 It is possible to scan multiple directories by separating them with the
 platform-specific path separator (; on Windows, NetWare
 and RISC OS; : on all other platforms; the value PHP is
 using is available as the PATH_SEPARATOR constant).
 If a blank directory is given in PHP_INI_SCAN_DIR, PHP
 will also scan the directory given at compile time via
 --with-config-file-scan-dir.

 Within each directory, PHP will scan all files ending in
 .ini in alphabetical order. A list of the files that
 were loaded, and in what order, is available by calling
 php_ini_scanned_files(), or by running PHP with the
 --ini option.

Assuming PHP is configured with --with-config-file-scan-dir=/etc/php.d,
and that the path separator is :...

$ php
 PHP will load all files in /etc/php.d/*.ini as configuration files.

$ PHP_INI_SCAN_DIR=/usr/local/etc/php.d php
 PHP will load all files in /usr/local/etc/php.d/*.ini as
 configuration files.

$ PHP_INI_SCAN_DIR=:/usr/local/etc/php.d php
 PHP will load all files in /etc/php.d/*.ini, then
 /usr/local/etc/php.d/*.ini as configuration files.

$ PHP_INI_SCAN_DIR=/usr/local/etc/php.d: php
 PHP will load all files in /usr/local/etc/php.d/*.ini, then
 /etc/php.d/*.ini as configuration files.

 .user.ini files

 PHP includes support for configuration INI files on a
 per-directory basis. These files are processed only by
 the CGI/FastCGI SAPI. This functionality obsoletes the PECL htscanner
 extension. If you are running PHP as Apache module, use .htaccess files for the same
 effect.

 In addition to the main php.ini file, PHP scans for INI files in each
 directory, starting with the directory of the requested PHP file, and
 working its way up to the current document root (as set in
 $_SERVER['DOCUMENT_ROOT']). In case the PHP file is
 outside the document root, only its directory is scanned.

 Only INI settings with the
 modes INI_PERDIR and
 INI_USER will be recognized in .user.ini-style INI
 files.

 Two new INI directives,
 user_ini.filename and
 user_ini.cache_ttl
 control the use of user INI files.

 user_ini.filename sets the name of the file PHP looks for
 in each directory; if set to an empty string, PHP doesn't scan at all. The
 default is .user.ini.

 user_ini.cache_ttl controls how often user INI files are
 re-read. The default is 300 seconds (5 minutes).

 Where a configuration setting may be set

 These modes determine when and where a PHP directive may or may not
 be set, and each directive within the manual refers to one of these
 modes. For example, some settings may be set within a PHP script
 using ini_set(), whereas others may require
 php.ini or httpd.conf.

 For example, the
 output_buffering setting
 is INI_PERDIR therefore it may not be set using
 ini_set(). However, the
 display_errors directive is
 INI_ALL therefore it may be set anywhere,
 including with ini_set().

 INI mode constants

 	Constants
 	Description

 	
 INI_USER
 (int)

 	
 Entry can be set in user scripts (like with ini_set())
 or in the Windows registry.
 Entry can be set in .user.ini

 	
 INI_PERDIR
 (int)

 	
 Entry can be set in php.ini, .htaccess, httpd.conf or .user.ini

 	
 INI_SYSTEM
 (int)

 	
 Entry can be set in php.ini or httpd.conf

 	
 INI_ALL
 (int)

 	
 Entry can be set anywhere

 How to change configuration settings

 Running PHP as an Apache module

 When using PHP as an Apache module, you can also change the
 configuration settings using directives in Apache configuration
 files (e.g. httpd.conf) and .htaccess files. You will need
 "AllowOverride Options" or "AllowOverride All" privileges to do so.

 There are several Apache directives that allow you
 to change the PHP configuration from within the Apache configuration
 files. For a listing of which directives are
 INI_ALL, INI_PERDIR,
 or INI_SYSTEM, have a look at the
 List of php.ini directives appendix.

 	
 php_value
 name
 value

 	

 Sets the value of the specified directive.
 Can be used only with INI_ALL and INI_PERDIR type directives.
 To clear a previously set value use none as the value.

 Note:

 Don't use php_value to set boolean values.
 php_flag (see below) should be used instead.

 	
 php_flag
 name
 on|off

 	

 Used to set a boolean configuration directive.
 Can be used only with INI_ALL and
 INI_PERDIR type directives.

 	
 php_admin_value
 name
 value

 	

 Sets the value of the specified directive.
 This can not be used in .htaccess files.
 Any directive type set with php_admin_value
 can not be overridden by .htaccess or ini_set().
 To clear a previously set value use none as the value.

 	
 php_admin_flag
 name
 on|off

 	

 Used to set a boolean configuration directive.
 This can not be used in .htaccess files.
 Any directive type set with php_admin_flag
 can not be overridden by .htaccess or ini_set().

 Example #1 Apache configuration example

<IfModule mod_php5.c>
 php_value include_path ".:/usr/local/lib/php"
 php_admin_flag engine on
</IfModule>
<IfModule mod_php4.c>
 php_value include_path ".:/usr/local/lib/php"
 php_admin_flag engine on
</IfModule>

 Caution

 PHP constants do not exist outside of PHP. For example, in
 httpd.conf you can not use PHP constants
 such as E_ALL or E_NOTICE
 to set the error_reporting
 directive as they will have no meaning and will evaluate to
 0. Use the associated bitmask values instead.
 These constants can be used in php.ini

 Changing PHP configuration via the Windows registry

 When running PHP on Windows, the configuration values can be
 modified on a per-directory basis using the Windows registry. The
 configuration values are stored in the registry key
 HKLM\SOFTWARE\PHP\Per Directory Values,
 in the sub-keys corresponding to the path names. For example, configuration
 values for the directory c:\inetpub\wwwroot would
 be stored in the key HKLM\SOFTWARE\PHP\Per Directory
 Values\c\inetpub\wwwroot. The settings for the
 directory would be active for any script running from this
 directory or any subdirectory of it. The values under the key
 should have the name of the PHP configuration directive and the
 string value. PHP constants in the values are not parsed.
 However, only configuration values changeable in
 INI_USER can be set
 this way, INI_PERDIR values can not,
 because these configuration values are re-read for each request.

 Other interfaces to PHP

 Regardless of how you run PHP, you can change certain values at runtime
 of your scripts through ini_set(). See the documentation
 on the ini_set() page for more information.

 If you are interested in a complete list of configuration settings
 on your system with their current values, you can execute the
 phpinfo() function, and review the resulting
 page. You can also access the values of individual configuration
 directives at runtime using ini_get() or
 get_cfg_var().

 Language Reference

 	Basic syntax	PHP tags
	Escaping from HTML
	Instruction separation
	Comments

	Types	Introduction
	Type System
	NULL
	Booleans
	Integers
	Floating point numbers
	Strings
	Numeric strings
	Arrays
	Objects
	Enumerations
	Resources
	Callbacks / Callables
	Mixed
	Void
	Never
	Relative class types
	Value types
	Iterables
	Type declarations
	Type Juggling

	Variables	Basics
	Predefined Variables
	Variable scope
	Variable variables
	Variables From External Sources

	Constants	Syntax
	Predefined constants
	Magic constants

	Expressions
	Operators	Operator Precedence
	Arithmetic — Arithmetic Operators
	Increment and Decrement — Incrementing/Decrementing Operators
	Assignment — Assignment Operators
	Bitwise — Bitwise Operators
	Comparison — Comparison Operators
	Error Control — Error Control Operators
	Execution — Execution Operators
	Logic — Logical Operators
	String — String Operators
	Array — Array Operators
	Type — Type Operators

	Control Structures	Introduction
	if
	else
	elseif/else if
	Alternative syntax for control structures
	while
	do-while
	for
	foreach
	break
	continue
	switch
	match
	declare
	return
	require
	include
	require_once
	include_once
	goto

	Functions	User-defined functions
	Function arguments
	Returning values
	Variable functions
	Internal (built-in) functions
	Anonymous functions
	Arrow Functions
	First class callable syntax

	Classes and Objects	Introduction
	The Basics
	Properties
	Class Constants
	Autoloading Classes
	Constructors and Destructors
	Visibility
	Object Inheritance
	Scope Resolution Operator (::)
	Static Keyword
	Class Abstraction
	Object Interfaces
	Traits
	Anonymous classes
	Overloading
	Object Iteration
	Magic Methods
	Final Keyword
	Object Cloning
	Comparing Objects
	Late Static Bindings
	Objects and references
	Object Serialization — Serializing objects - objects in sessions
	Covariance and Contravariance
	OOP Changelog

	Namespaces	Overview — Namespaces overview
	Namespaces — Defining namespaces
	Sub-namespaces — Declaring sub-namespaces
	Defining multiple namespaces in the same file
	Basics — Using namespaces: Basics
	Namespaces and dynamic language features
	namespace keyword and __NAMESPACE__ — The namespace keyword and __NAMESPACE__ magic constant
	Aliasing and Importing — Using namespaces: Aliasing/Importing
	Global space
	Fallback to global space — Using namespaces: fallback to the global space for functions and constants
	Name resolution rules
	FAQ — FAQ: things you need to know about namespaces

	Enumerations	Enumerations overview
	Basic enumerations
	Backed enumerations
	Enumeration methods
	Enumeration static methods
	Enumeration constants
	Traits
	Enum values in constant expressions
	Differences from objects
	Value listing
	Serialization
	Why enums aren't extendable
	Examples

	Errors	Basics
	Errors in PHP 7

	Exceptions	Extending Exceptions

	Fibers
	Generators	Generators overview
	Generator syntax
	Comparing generators with Iterator objects

	Attributes	Attributes overview
	Attribute syntax
	Reading Attributes with the Reflection API
	Declaring Attribute Classes

	References Explained	What References Are
	What References Do
	What References Are Not
	Passing by Reference
	Returning References
	Unsetting References
	Spotting References

	Predefined Variables	Superglobals — Built-in variables that are always available in all scopes
	$GLOBALS — References all variables available in global scope
	$_SERVER — Server and execution environment information
	$_GET — HTTP GET variables
	$_POST — HTTP POST variables
	$_FILES — HTTP File Upload variables
	$_REQUEST — HTTP Request variables
	$_SESSION — Session variables
	$_ENV — Environment variables
	$_COOKIE — HTTP Cookies
	$php_errormsg — The previous error message
	$http_response_header — HTTP response headers
	$argc — The number of arguments passed to script
	$argv — Array of arguments passed to script

	Predefined Exceptions	Exception
	ErrorException
	ClosedGeneratorException — The ClosedGeneratorException class
	Error
	ArgumentCountError
	ArithmeticError
	AssertionError
	DivisionByZeroError
	CompileError
	ParseError
	TypeError
	ValueError
	UnhandledMatchError
	FiberError

	Predefined Interfaces and Classes	Traversable — The Traversable interface
	Iterator — The Iterator interface
	IteratorAggregate — The IteratorAggregate interface
	InternalIterator — The InternalIterator class
	Throwable
	ArrayAccess — The ArrayAccess interface
	Serializable — The Serializable interface
	Closure — The Closure class
	stdClass — The stdClass class
	Generator — The Generator class
	Fiber — The Fiber class
	WeakReference — The WeakReference class
	WeakMap — The WeakMap class
	Stringable — The Stringable interface
	UnitEnum — The UnitEnum interface
	BackedEnum — The BackedEnum interface
	SensitiveParameterValue — The SensitiveParameterValue class

	Predefined Attributes	Attribute — The Attribute class
	AllowDynamicProperties — The AllowDynamicProperties class
	Override — The Override class
	ReturnTypeWillChange — The ReturnTypeWillChange class
	SensitiveParameter — The SensitiveParameter class

	Context options and parameters	Socket context options — Socket context option listing
	HTTP context options — HTTP context option listing
	FTP context options — FTP context option listing
	SSL context options — SSL context option listing
	Phar context options — Phar context option listing
	Context parameters — Context parameter listing
	Zip context options — Zip context option listing
	Zlib context options — Zlib context option listing

	Supported Protocols and Wrappers	file:// — Accessing local filesystem
	http:// — Accessing HTTP(s) URLs
	ftp:// — Accessing FTP(s) URLs
	php:// — Accessing various I/O streams
	zlib:// — Compression Streams
	data:// — Data (RFC 2397)
	glob:// — Find pathnames matching pattern
	phar:// — PHP Archive
	ssh2:// — Secure Shell 2
	rar:// — RAR
	ogg:// — Audio streams
	expect:// — Process Interaction Streams

 Basic syntax

Table of Contents
	PHP tags
	Escaping from HTML
	Instruction separation
	Comments

 PHP tags

 When PHP parses a file, it looks for opening and closing tags, which are
 <?php and ?> which tell PHP to
 start and stop interpreting the code between them. Parsing in this manner
 allows PHP to be embedded in all sorts of different documents, as
 everything outside of a pair of opening and closing tags is ignored by the
 PHP parser.

 PHP includes a short echo tag <?= which is a
 short-hand to the more verbose <?php echo.

 Example #1 PHP Opening and Closing Tags

1. <?php echo 'if you want to serve PHP code in XHTML or XML documents,
 use these tags'; ?>

2. You can use the short echo tag to <?= 'print this string' ?>.
 It's equivalent to <?php echo 'print this string' ?>.

3. <? echo 'this code is within short tags, but will only work '.
 'if short_open_tag is enabled'; ?>

 Short tags (example three) are available by default but can be disabled
 either via the short_open_tag
 php.ini configuration file directive, or are disabled by default if
 PHP is built with the --disable-short-tags configuration.

 Note:

 As short tags can be disabled it is recommended to only use the normal
 tags (<?php ?> and <?= ?>) to
 maximise compatibility.

 If a file contains only PHP code, it is preferable to omit the PHP closing tag
 at the end of the file. This prevents accidental whitespace or new lines
 being added after the PHP closing tag, which may cause unwanted effects
 because PHP will start output buffering when there is no intention from
 the programmer to send any output at that point in the script.

<?php
echo "Hello world";

// ... more code

echo "Last statement";

// the script ends here with no PHP closing tag

 Escaping from HTML

 Everything outside of a pair of opening and closing tags is ignored by the
 PHP parser which allows PHP files to have mixed content. This allows PHP
 to be embedded in HTML documents, for example to create templates.

<p>This is going to be ignored by PHP and displayed by the browser.</p>
<?php echo 'While this is going to be parsed.'; ?>
<p>This will also be ignored by PHP and displayed by the browser.</p>

 This works as expected, because when the PHP interpreter hits the ?> closing
 tags, it simply starts outputting whatever it finds (except for the
 immediately following newline - see
 instruction separation)
 until it hits another opening tag unless in the middle of a conditional
 statement in which case the interpreter will determine the outcome of the
 conditional before making a decision of what to skip over.
 See the next example.

 Using structures with conditions

 Example #1 Advanced escaping using conditions

<?php if ($expression == true): ?>
 This will show if the expression is true.
<?php else: ?>
 Otherwise this will show.
<?php endif; ?>

 In this example PHP will skip the blocks where the condition is not met, even
 though they are outside of the PHP open/close tags; PHP skips them according
 to the condition since the PHP interpreter will jump over blocks contained
 within a condition that is not met.

 For outputting large blocks of text, dropping out of PHP parsing mode is
 generally more efficient than sending all of the text through
 echo or print.

 Note:

 If PHP is embeded within XML or XHTML the normal PHP
 <?php ?> must be used to remain compliant
 with the standards.

 Instruction separation

 As in C or Perl, PHP requires instructions to be terminated
 with a semicolon at the end of each statement. The closing tag
 of a block of PHP code automatically implies a semicolon; you
 do not need to have a semicolon terminating the last line of a
 PHP block. The closing tag for the block will include the immediately
 trailing newline if one is present.

 Example #1 Example showing the closing tag encompassing the trailing newline

<?php echo "Some text"; ?>
No newline
<?= "But newline now" ?>

 The above example will output:

Some textNo newline
But newline now

 Examples of entering and exiting the PHP parser:

<?php
 echo 'This is a test';
?>

<?php echo 'This is a test' ?>

<?php echo 'We omitted the last closing tag';

 Note:

 The closing tag of a PHP block at the end of a file is optional,
 and in some cases omitting it is helpful when using include
 or require, so unwanted whitespace will
 not occur at the end of files, and you will still be able to add
 headers to the response later. It is also handy if you use output
 buffering, and would not like to see added unwanted whitespace
 at the end of the parts generated by the included files.

 Comments

 PHP supports 'C', 'C++' and Unix shell-style (Perl style) comments. For example:

<?php
 echo 'This is a test'; // This is a one-line c++ style comment
 /* This is a multi line comment
 yet another line of comment */
 echo 'This is yet another test';
 echo 'One Final Test'; # This is a one-line shell-style comment
?>

 The "one-line" comment styles only comment to the end of
 the line or the current block of PHP code, whichever comes first.
 This means that HTML code after // ... ?>
 or # ... ?> WILL be printed:
 ?> breaks out of PHP mode and returns to HTML mode, and
 // or # cannot influence that.

<h1>This is an <?php # echo 'simple';?> example</h1>
<p>The header above will say 'This is an example'.</p>

 'C' style comments end at the first */ encountered.
 Make sure you don't nest 'C' style comments. It is easy to make this
 mistake if you are trying to comment out a large block of code.

<?php
 /*
 echo 'This is a test'; /* This comment will cause a problem */
 */
?>

 Types

Table of Contents
	Introduction
	Type System
	NULL
	Booleans
	Integers
	Floating point numbers
	Strings
	Numeric strings
	Arrays
	Objects
	Enumerations
	Resources
	Callbacks / Callables
	Mixed
	Void
	Never
	Relative class types
	Value types
	Iterables
	Type declarations
	Type Juggling

 Introduction

 Every single expression in PHP has one of the following
 built-in types depending on its value:

 	null

 	bool

 	int

 	float (floating-point number)

 	string

 	array

 	object

 	callable

 	resource

 PHP is a dynamically typed language, which means that by default there is
 no need to specify the type of a variable, as this will be determined at
 runtime. However, it is possible to statically type some aspect of the
 language via the use of
 type declarations.

 Types restrict the kind of operations that can be performed on them.
 However, if an expression/variable is used in an operation which
 its type does not support, PHP will attempt to
 type juggle
 the value into a type that supports the operation.
 This process depends on the context in which the value is used.
 For more information, see the section on
 Type Juggling.

 Tip

 The type comparison tables
 may also be useful, as various examples of comparison between values of
 different types are present.

 Note:

 It is possible to force an expression to be evaluated to a certain type by
 using a type cast.
 A variable can also be type cast in-place by using the
 settype() function on it.

 To check the value and type of an
 expression,
 use the var_dump() function.
 To retrieve the type of an
 expression,
 use the get_debug_type() function.
 However, to check if an expression is of a certain type use the

 is_type functions instead.

<?php
$a_bool = true; // a bool
$a_str = "foo"; // a string
$a_str2 = 'foo'; // a string
$an_int = 12; // an int

echo get_debug_type($a_bool), "\n";
echo get_debug_type($a_str), "\n";

// If this is an integer, increment it by four
if (is_int($an_int)) {
 $an_int += 4;
}
var_dump($an_int);

// If $a_bool is a string, print it out
if (is_string($a_bool)) {
 echo "String: $a_bool";
}
?>

 Output of the above example in PHP 8:

bool
string
int(16)

 Note:

 Prior to PHP 8.0.0, where the get_debug_type() is not
 available, the gettype() function can be used instead.
 However, it doesn't use the canonical type names.

 Type System

 PHP uses a nominal type system with a strong behavioral subtyping relation.
 The subtyping relation is checked at compile time whereas the verification of
 types is dynamically checked at run time.

 PHP's type system supports various atomic types that can be composed together
 to create more complex types. Some of these types can be written as
 type declarations.

 Atomic types

 Some atomic types are built-in types which are tightly integrated with the
 language and cannot be reproduced with user defined types.

 The list of base types is:

 	
 Built-in types

 	
 null type

 	

 Scalar types:

 	
 bool type

 	
 int type

 	
 float type

 	
 string type

 	
 array type

 	
 object type

 	
 resource type

 	
 never type

 	
 void type

 	

 Relative class types:
 self, parent, and static

 	

 Value types

 	
 false

 	
 true

 	

 User-defined types (generally referred to as class-types)

 	
 Interfaces

 	
 Classes

 	
 Enumerations

 	
 callable type

 Composite types

 It is possible to combine multiple atomic types into composite types.
 PHP allows types to be combined in the following ways:

 	

 Intersection of class-types (interfaces and class names).

 	

 Union of types.

 Intersection types

 An intersection type accepts values which satisfies multiple
 class-type declarations, rather than a single one.
 Individual types which form the intersection type are joined by the
 & symbol. Therefore, an intersection type comprised
 of the types T, U, and
 V will be written as T&U&V.

 Union types

 A union type accepts values of multiple different types,
 rather than a single one.
 Individual types which form the union type are joined by the
 | symbol. Therefore, a union type comprised
 of the types T, U, and
 V will be written as T|U|V.
 If one of the types is an intersection type, it needs to be bracketed
 with parenthesis for it to written in DNF:
 T|(X&Y).

 Type aliases

 PHP supports two type aliases: mixed and
 iterable which corresponds to the
 union type
 of object|resource|array|string|float|int|bool|null
 and Traversable|array respectively.

 Note:

 PHP does not support user-defined type aliases.

 NULL

 The null type is PHP's unit type, i.e. it has only one value:
 null.

 Undefined, and unset() variables will resolve to the
 value null.

 Syntax

 There is only one value of type null, and that is the
 case-insensitive constant null.

<?php
$var = NULL;
?>

 Casting to null

 WarningThis feature has been
DEPRECATED as of PHP 7.2.0, and REMOVED as of PHP 8.0.0. Relying on this feature
is highly discouraged.

 Casting a variable to null using (unset) $var
 will not remove the variable or unset its value.
 It will only return a null value.

 See Also

 	is_null()

 	unset()

 Booleans

 The bool type only has two values, and is used to express
 a truth value. It can be either true or false.

 Syntax

 To specify a bool literal, use the constants true or
 false. Both are case-insensitive.

<?php
$foo = True; // assign the value TRUE to $foo
?>

 Typically, the result of an operator
 which returns a bool value is passed on to a
 control structure.

<?php
// == is an operator which tests
// equality and returns a boolean
if ($action == "show_version") {
 echo "The version is 1.23";
}

// this is not necessary...
if ($show_separators == TRUE) {
 echo "<hr>\n";
}

// ...because this can be used with exactly the same meaning:
if ($show_separators) {
 echo "<hr>\n";
}
?>

 Converting to boolean

 To explicitly convert a value to bool, use the
 (bool) cast. Generally this is not necessary because when
 a value is used in a logical context it will be automatically interpreted
 as a value of type bool. For more information see the
 Type Juggling page.

 When converting to bool, the following values are considered
 false:

 	

 the boolean false itself

 	

 the integer
 0 (zero)

 	

 the floats
 0.0 and -0.0 (zero)

 	

 the empty string "",
 and the string "0"

 	

 an array with zero elements

 	

 the unit type NULL (including
 unset variables)

 	

 Internal objects that overload their casting behaviour to bool.
 For example: SimpleXML objects
 created from empty elements without attributes.

 Every other value is considered true
 (including resource
 and NAN).

 Warning

 -1 is considered true, like any other non-zero
 (whether negative or positive) number!

<?php
var_dump((bool) ""); // bool(false)
var_dump((bool) "0"); // bool(false)
var_dump((bool) 1); // bool(true)
var_dump((bool) -2); // bool(true)
var_dump((bool) "foo"); // bool(true)
var_dump((bool) 2.3e5); // bool(true)
var_dump((bool) array(12)); // bool(true)
var_dump((bool) array()); // bool(false)
var_dump((bool) "false"); // bool(true)
?>

 Integers

 An int is a number of the set
 ℤ = {..., -2, -1, 0, 1, 2, ...}.

 See Also

 	Floating point numbers

 	Arbitrary precision / BCMath

 	Arbitrary length integer / GMP

 Syntax

 Ints can be specified in decimal (base 10), hexadecimal
 (base 16), octal (base 8) or binary (base 2) notation.
 The negation operator
 can be used to denote a negative int.

 To use octal notation, precede the number with a 0 (zero).
 As of PHP 8.1.0, octal notation can also be preceded with 0o or 0O.
 To use hexadecimal notation precede the number with 0x.
 To use binary notation precede the number with 0b.

 As of PHP 7.4.0, integer literals may contain underscores (_) between digits,
 for better readability of literals. These underscores are removed by PHP's scanner.

 Example #1 Integer literals

<?php
$a = 1234; // decimal number
$a = 0123; // octal number (equivalent to 83 decimal)
$a = 0o123; // octal number (as of PHP 8.1.0)
$a = 0x1A; // hexadecimal number (equivalent to 26 decimal)
$a = 0b11111111; // binary number (equivalent to 255 decimal)
$a = 1_234_567; // decimal number (as of PHP 7.4.0)
?>

 Formally, the structure for int literals is as of PHP 8.1.0
 (previously, the 0o or 0O octal
 prefixes were not allowed, and prior to PHP 7.4.0 the underscores were
 not allowed):

decimal : [1-9][0-9]*(_[0-9]+)*
 | 0

hexadecimal : 0[xX][0-9a-fA-F]+(_[0-9a-fA-F]+)*

octal : 0[oO]?[0-7]+(_[0-7]+)*

binary : 0[bB][01]+(_[01]+)*

integer : decimal
 | hexadecimal
 | octal
 | binary

 The size of an int is platform-dependent, although a maximum
 value of about two billion is the usual value (that's 32 bits signed).
 64-bit platforms usually have a maximum value of about 9E18.
 PHP does not support unsigned ints.
 int size can be determined
 using the constant PHP_INT_SIZE, maximum value using
 the constant PHP_INT_MAX,
 and minimum value using the constant PHP_INT_MIN.

 Integer overflow

 If PHP encounters a number beyond the bounds of the int
 type, it will be interpreted as a float instead. Also, an
 operation which results in a number beyond the bounds of the
 int type will return a float instead.

 Example #2 Integer overflow on a 32-bit system

<?php
$large_number = 2147483647;
var_dump($large_number); // int(2147483647)

$large_number = 2147483648;
var_dump($large_number); // float(2147483648)

$million = 1000000;
$large_number = 50000 * $million;
var_dump($large_number); // float(50000000000)
?>

 Example #3 Integer overflow on a 64-bit system

<?php
$large_number = 9223372036854775807;
var_dump($large_number); // int(9223372036854775807)

$large_number = 9223372036854775808;
var_dump($large_number); // float(9.2233720368548E+18)

$million = 1000000;
$large_number = 50000000000000 * $million;
var_dump($large_number); // float(5.0E+19)
?>

 There is no int division operator in PHP, to achieve this
 use the intdiv() function.
 1/2 yields the float 0.5.
 The value can be cast to an int to round it towards zero, or
 the round() function provides finer control over rounding.

<?php
var_dump(25/7); // float(3.5714285714286)
var_dump((int) (25/7)); // int(3)
var_dump(round(25/7)); // float(4)
?>

 Converting to integer

 To explicitly convert a value to int, use either the
 (int) or (integer) casts. However, in
 most cases the cast is not needed, since a value will be automatically
 converted if an operator, function or control structure requires an
 int argument. A value can also be converted to
 int with the intval() function.

 If a resource is converted to an int, then
 the result will be the unique resource number assigned to the
 resource by PHP at runtime.

 See also Type Juggling.

 From booleans

 false will yield 0 (zero), and true will yield
 1 (one).

 From floating point numbers

 When converting from float to int, the number
 will be rounded towards zero.
 As of PHP 8.1.0, a deprecation notice is emitted when implicitly converting a non-integral float to int which loses precision.

<?php

function foo($value): int {
 return $value;
}

var_dump(foo(8.1)); // "Deprecated: Implicit conversion from float 8.1 to int loses precision" as of PHP 8.1.0
var_dump(foo(8.1)); // 8 prior to PHP 8.1.0
var_dump(foo(8.0)); // 8 in both cases

var_dump((int)8.1); // 8 in both cases
var_dump(intval(8.1)); // 8 in both cases
?>

 If the float is beyond the boundaries of int (usually
 +/- 2.15e+9 = 2^31 on 32-bit platforms and
 +/- 9.22e+18 = 2^63 on 64-bit platforms),
 the result is undefined, since the float doesn't
 have enough precision to give an exact int result.
 No warning, not even a notice will be issued when this happens!

 Note:

 NaN and Infinity will always be zero when cast to int.

 Warning

 Never cast an unknown fraction to int, as this can
 sometimes lead to unexpected results.

<?php
echo (int) ((0.1+0.7) * 10); // echoes 7!
?>

 See also the warning about float
 precision.

 From strings

 If the string is
 numeric
 or leading numeric then it will resolve to the
 corresponding integer value, otherwise it is converted to zero
 (0).

 From NULL

 null is always converted to zero (0).

 From other types

 Caution

 The behaviour of converting to int is undefined for other
 types. Do not rely on any observed behaviour, as it
 can change without notice.

 Floating point numbers

 Floating point numbers (also known as "floats", "doubles", or "real numbers")
 can be specified using any of the following syntaxes:

<?php
$a = 1.234;
$b = 1.2e3;
$c = 7E-10;
$d = 1_234.567; // as of PHP 7.4.0
?>

 Formally as of PHP 7.4.0 (previously, underscores have not been allowed):

LNUM [0-9]+(_[0-9]+)*
DNUM ({LNUM}?"."{LNUM}) | ({LNUM}"."{LNUM}?)
EXPONENT_DNUM (({LNUM} | {DNUM}) [eE][+-]? {LNUM})

 The size of a float is platform-dependent, although a maximum of approximately 1.8e308
 with a precision of roughly 14 decimal digits is a common value (the 64 bit IEEE
 format).

 Warning
 Floating point precision

 Floating point numbers have limited precision. Although it depends on the
 system, PHP typically uses the IEEE 754 double precision format, which will
 give a maximum relative error due to rounding in the order of 1.11e-16.
 Non elementary arithmetic operations may give larger errors, and, of course,
 error propagation must be considered when several operations are
 compounded.

 Additionally, rational numbers that are exactly representable as floating
 point numbers in base 10, like 0.1 or
 0.7, do not have an exact representation as floating
 point numbers in base 2, which is used internally, no matter the size of
 the mantissa. Hence, they cannot be converted into their internal binary
 counterparts without a small loss of precision. This can lead to confusing
 results: for example, floor((0.1+0.7)*10) will usually
 return 7 instead of the expected 8,
 since the internal representation will be something like
 7.9999999999999991118....

 So never trust floating number results to the last digit, and do not compare
 floating point numbers directly for equality. If higher precision is
 necessary, the arbitrary precision math functions
 and gmp functions are available.

 For a "simple" explanation, see the floating point guide
 that's also titled "Why don’t my numbers add up?"

 Converting to float

 From strings

 If the string is
 numeric
 or leading numeric then it will resolve to the
 corresponding float value, otherwise it is converted to zero
 (0).

 From other types

 For values of other types, the conversion is performed by converting the
 value to int first and then to float. See
 Converting to integer
 for more information.

 Note:

 As certain types have undefined behavior when converting to
 int, this is also the case when converting to
 float.

 Comparing floats

 As noted in the warning above, testing floating point values for equality is
 problematic, due to the way that they are represented internally. However,
 there are ways to make comparisons of floating point values that work around
 these limitations.

 To test floating point values for equality, an upper bound on the relative
 error due to rounding is used. This value is known as the machine epsilon,
 or unit roundoff, and is the smallest acceptable difference in calculations.

 $a and $b are equal to 5 digits of
 precision.

<?php
$a = 1.23456789;
$b = 1.23456780;
$epsilon = 0.00001;

if(abs($a-$b) < $epsilon) {
 echo "true";
}
?>

 NaN

 Some numeric operations can result in a value represented by the constant
 NAN. This result represents an undefined or
 unrepresentable value in floating-point calculations. Any loose or strict
 comparisons of this value against any other value, including itself, but except true, will
 have a result of false.

 Because NAN represents any number of different values,
 NAN should not be compared to other values, including
 itself, and instead should be checked for using is_nan().

 Strings

 A string is a series of characters, where a character is
 the same as a byte. This means that PHP only supports a 256-character set,
 and hence does not offer native Unicode support. See
 details of the string
 type.

 Note:

 On 32-bit builds, a string can be as large as up to 2GB
 (2147483647 bytes maximum)

 Syntax

 A string literal can be specified in four different ways:

 	

 single quoted

 	

 double quoted

 	

 heredoc syntax

 	

 nowdoc syntax

 Single quoted

 The simplest way to specify a string is to enclose it in single
 quotes (the character ').

 To specify a literal single quote, escape it with a backslash
 (\). To specify a literal backslash, double it
 (\\). All other instances of backslash will be treated
 as a literal backslash: this means that the other escape sequences you
 might be used to, such as \r or \n,
 will be output literally as specified rather than having any special
 meaning.

 Note:

 Unlike the double-quoted
 and heredoc syntaxes,
 variables and escape sequences
 for special characters will not be expanded when they
 occur in single quoted strings.

<?php
echo 'this is a simple string';

echo 'You can also have embedded newlines in
strings this way as it is
okay to do';

// Outputs: Arnold once said: "I'll be back"
echo 'Arnold once said: "I\'ll be back"';

// Outputs: You deleted C:*.*?
echo 'You deleted C:*.*?';

// Outputs: You deleted C:*.*?
echo 'You deleted C:*.*?';

// Outputs: This will not expand: \n a newline
echo 'This will not expand: \n a newline';

// Outputs: Variables do not $expand $either
echo 'Variables do not $expand $either';
?>

 Double quoted

 If the string is enclosed in double-quotes ("), PHP will
 interpret the following escape sequences for special characters:

 Escaped characters

 	Sequence
 	Meaning

 	\n
 	linefeed (LF or 0x0A (10) in ASCII)

 	\r
 	carriage return (CR or 0x0D (13) in ASCII)

 	\t
 	horizontal tab (HT or 0x09 (9) in ASCII)

 	\v
 	vertical tab (VT or 0x0B (11) in ASCII)

 	\e
 	escape (ESC or 0x1B (27) in ASCII)

 	\f
 	form feed (FF or 0x0C (12) in ASCII)

 	\\
 	backslash

 	\$
 	dollar sign

 	\"
 	double-quote

 	\[0-7]{1,3}
 	
 Octal: the sequence of characters matching the regular expression [0-7]{1,3}
 is a character in octal notation (e.g. "\101" === "A"),
 which silently overflows to fit in a byte (e.g. "\400" === "\000")

 	\x[0-9A-Fa-f]{1,2}
 	
 Hexadecimal: the sequence of characters matching the regular expression
 [0-9A-Fa-f]{1,2} is a character in hexadecimal notation
 (e.g. "\x41" === "A")

 	\u{[0-9A-Fa-f]+}
 	
 Unicode: the sequence of characters matching the regular expression [0-9A-Fa-f]+
 is a Unicode codepoint, which will be output to the string as that codepoint's UTF-8 representation.
 The braces are required in the sequence. E.g. "\u{41}" === "A"

 As in single quoted strings, escaping any other character will
 result in the backslash being printed too.

 The most important feature of double-quoted strings is the fact
 that variable names will be expanded. See
 string parsing for
 details.

 Heredoc

 A third way to delimit strings is the heredoc syntax:
 <<<. After this operator, an identifier is
 provided, then a newline. The string itself follows, and then
 the same identifier again to close the quotation.

 The closing identifier may be indented by space or tab, in which case
 the indentation will be stripped from all lines in the doc string.
 Prior to PHP 7.3.0, the closing identifier must
 begin in the first column of the line.

 Also, the closing identifier must follow the same naming rules as any
 other label in PHP: it must contain only alphanumeric characters and
 underscores, and must start with a non-digit character or underscore.

 Example #1 Basic Heredoc example as of PHP 7.3.0

<?php
// no indentation
echo <<<END
 a
 b
 c
\n
END;

// 4 spaces of indentation
echo <<<END
 a
 b
 c
 END;

 Output of the above example in PHP 7.3:

 a
 b
 c

 a
 b
c

 If the closing identifier is indented further than any lines of the body, then a ParseError will be thrown:

 Example #2 Closing identifier must not be indented further than any lines of the body

<?php
echo <<<END
 a
 b
c
 END;

 Output of the above example in PHP 7.3:

PHP Parse error: Invalid body indentation level (expecting an indentation level of at least 3) in example.php on line 4

 If the closing identifier is indented, tabs can be used as well, however,
 tabs and spaces must not be intermixed regarding
 the indentation of the closing identifier and the indentation of the body
 (up to the closing identifier). In any of these cases, a ParseError will be thrown.

 These whitespace constraints have been included because mixing tabs and
 spaces for indentation is harmful to legibility.

 Example #3 Different indentation for body (spaces) closing identifier

<?php
// All the following code do not work.

// different indentation for body (spaces) ending marker (tabs)
{
 echo <<<END
 a
 END;
}

// mixing spaces and tabs in body
{
 echo <<<END
 a
 END;
}

// mixing spaces and tabs in ending marker
{
 echo <<<END
 a
 END;
}

 Output of the above example in PHP 7.3:

PHP Parse error: Invalid indentation - tabs and spaces cannot be mixed in example.php line 8

 The closing identifier for the body string is not required to be
 followed by a semicolon or newline. For example, the following code
 is allowed as of PHP 7.3.0:

 Example #4 Continuing an expression after a closing identifier

<?php
$values = [<<<END
a
 b
 c
END, 'd e f'];
var_dump($values);

 Output of the above example in PHP 7.3:

array(2) {
 [0] =>
 string(11) "a
 b
 c"
 [1] =>
 string(5) "d e f"
}

 Warning

 If the closing identifier was found at the start of a line, then
 regardless of whether it was a part of another word, it may be considered
 as the closing identifier and causes a ParseError.

 Example #5 Closing identifier in body of the string tends to cause ParseError

<?php
$values = [<<<END
a
b
END ING
END, 'd e f'];

 Output of the above example in PHP 7.3:

PHP Parse error: syntax error, unexpected identifier "ING", expecting "]" in example.php on line 6

 To avoid this problem, it is safe to follow the simple rule:
 do not choose as a closing identifier if it appears in the body
 of the text.

 Warning

 Prior to PHP 7.3.0, it is very important to note that the line with the
 closing identifier must contain no other characters, except a semicolon
 (;).
 That means especially that the identifier
 may not be indented, and there may not be any spaces
 or tabs before or after the semicolon. It's also important to realize that
 the first character before the closing identifier must be a newline as
 defined by the local operating system. This is \n on
 UNIX systems, including macOS. The closing delimiter must also be
 followed by a newline.

 If this rule is broken and the closing identifier is not "clean", it will
 not be considered a closing identifier, and PHP will continue looking for
 one. If a proper closing identifier is not found before the end of the
 current file, a parse error will result at the last line.

 Example #6 Invalid example, prior to PHP 7.3.0

<?php
class foo {
 public $bar = <<<EOT
bar
 EOT;
}
// Identifier must not be indented
?>

 Example #7 Valid example, even prior to PHP 7.3.0

<?php
class foo {
 public $bar = <<<EOT
bar
EOT;
}
?>

 Heredocs containing variables can not be used for initializing class properties.

 Heredoc text behaves just like a double-quoted string, without
 the double quotes. This means that quotes in a heredoc do not need to be
 escaped, but the escape codes listed above can still be used. Variables are
 expanded, but the same care must be taken when expressing complex variables
 inside a heredoc as with strings.

 Example #8 Heredoc string quoting example

<?php
$str = <<<EOD
Example of string
spanning multiple lines
using heredoc syntax.
EOD;

/* More complex example, with variables. */
class foo
{
 var $foo;
 var $bar;

 function __construct()
 {
 $this->foo = 'Foo';
 $this->bar = array('Bar1', 'Bar2', 'Bar3');
 }
}

$foo = new foo();
$name = 'MyName';

echo <<<EOT
My name is "$name". I am printing some $foo->foo.
Now, I am printing some {$foo->bar[1]}.
This should print a capital 'A': \x41
EOT;
?>

 The above example will output:

My name is "MyName". I am printing some Foo.
Now, I am printing some Bar2.
This should print a capital 'A': A

 It is also possible to use the Heredoc syntax to pass data to function
 arguments:

 Example #9 Heredoc in arguments example

<?php
var_dump(array(<<<EOD
foobar!
EOD
));
?>

 It's possible to initialize static variables and class
 properties/constants using the Heredoc syntax:

 Example #10 Using Heredoc to initialize static values

<?php
// Static variables
function foo()
{
 static $bar = <<<LABEL
Nothing in here...
LABEL;
}

// Class properties/constants
class foo
{
 const BAR = <<<FOOBAR
Constant example
FOOBAR;

 public $baz = <<<FOOBAR
Property example
FOOBAR;
}
?>

 The opening Heredoc identifier may optionally be
 enclosed in double quotes:

 Example #11 Using double quotes in Heredoc

<?php
echo <<<"FOOBAR"
Hello World!
FOOBAR;
?>

 Nowdoc

 Nowdocs are to single-quoted strings what heredocs are to double-quoted
 strings. A nowdoc is specified similarly to a heredoc, but no
 parsing is done inside a nowdoc. The construct is ideal for
 embedding PHP code or other large blocks of text without the need for
 escaping. It shares some features in common with the SGML
 <![CDATA[]]> construct, in that it declares a
 block of text which is not for parsing.

 A nowdoc is identified with the same <<<
 sequence used for heredocs, but the identifier which follows is enclosed in
 single quotes, e.g. <<<'EOT'. All the rules for
 heredoc identifiers also apply to nowdoc identifiers, especially those
 regarding the appearance of the closing identifier.

 Example #12 Nowdoc string quoting example

<?php
echo <<<'EOD'
Example of string spanning multiple lines
using nowdoc syntax. Backslashes are always treated literally,
e.g. \\ and \'.
EOD;

 The above example will output:

Example of string spanning multiple lines
using nowdoc syntax. Backslashes are always treated literally,
e.g. \\ and \'.

 Example #13 Nowdoc string quoting example with variables

<?php
class foo
{
 public $foo;
 public $bar;

 function __construct()
 {
 $this->foo = 'Foo';
 $this->bar = array('Bar1', 'Bar2', 'Bar3');
 }
}

$foo = new foo();
$name = 'MyName';

echo <<<'EOT'
My name is "$name". I am printing some $foo->foo.
Now, I am printing some {$foo->bar[1]}.
This should not print a capital 'A': \x41
EOT;
?>

 The above example will output:

My name is "$name". I am printing some $foo->foo.
Now, I am printing some {$foo->bar[1]}.
This should not print a capital 'A': \x41

 Example #14 Static data example

<?php
class foo {
 public $bar = <<<'EOT'
bar
EOT;
}
?>

 Variable parsing

 When a string is specified in double quotes or with heredoc,
 variables are parsed within it.

 There are two types of syntax: a
 simple one and a
 complex one.
 The simple syntax is the most common and convenient. It provides a way to
 embed a variable, an array value, or an object
 property in a string with a minimum of effort.

 The complex syntax can be recognised by the
 curly braces surrounding the expression.

 Simple syntax

 If a dollar sign ($) is encountered, the parser will
 greedily take as many tokens as possible to form a valid variable name.
 Enclose the variable name in curly braces to explicitly specify the end of
 the name.

<?php
$juice = "apple";

echo "He drank some $juice juice." . PHP_EOL;

// Unintended. "s" is a valid character for a variable name, so this refers to $juices, not $juice.
echo "He drank some juice made of $juices." . PHP_EOL;

// Explicitly specify the end of the variable name by enclosing the reference in braces.
echo "He drank some juice made of {$juice}s.";

?>

 The above example will output:

He drank some apple juice.
He drank some juice made of .
He drank some juice made of apples.

 Similarly, an array index or an object property
 can be parsed. With array indices, the closing square bracket
 (]) marks the end of the index. The same rules apply to
 object properties as to simple variables.

 Example #15 Simple syntax example

<?php
$juices = array("apple", "orange", "koolaid1" => "purple");

echo "He drank some $juices[0] juice.".PHP_EOL;
echo "He drank some $juices[1] juice.".PHP_EOL;
echo "He drank some $juices[koolaid1] juice.".PHP_EOL;

class people {
 public $john = "John Smith";
 public $jane = "Jane Smith";
 public $robert = "Robert Paulsen";

 public $smith = "Smith";
}

$people = new people();

echo "$people->john drank some $juices[0] juice.".PHP_EOL;
echo "$people->john then said hello to $people->jane.".PHP_EOL;
echo "$people->john's wife greeted $people->robert.".PHP_EOL;
echo "$people->robert greeted the two $people->smiths."; // Won't work
?>

 The above example will output:

He drank some apple juice.
He drank some orange juice.
He drank some purple juice.
John Smith drank some apple juice.
John Smith then said hello to Jane Smith.
John Smith's wife greeted Robert Paulsen.
Robert Paulsen greeted the two .

 As of PHP 7.1.0 also negative numeric indices are
 supported.

 Example #16 Negative numeric indices

<?php
$string = 'string';
echo "The character at index -2 is $string[-2].", PHP_EOL;
$string[-3] = 'o';
echo "Changing the character at index -3 to o gives $string.", PHP_EOL;
?>

 The above example will output:

The character at index -2 is n.
Changing the character at index -3 to o gives strong.

 For anything more complex, you should use the complex syntax.

 Complex (curly) syntax

 This isn't called complex because the syntax is complex, but because it
 allows for the use of complex expressions.

 Any scalar variable, array element or object property with a
 string representation can be included via this syntax.
 The expression is written the same way as it would appear outside the
 string, and then wrapped in { and
 }. Since { can not be escaped, this
 syntax will only be recognised when the $ immediately
 follows the {. Use {\$ to get a
 literal {$. Some examples to make it clear:

<?php
// Show all errors
error_reporting(E_ALL);

$great = 'fantastic';

// Won't work, outputs: This is { fantastic}
echo "This is { $great}";

// Works, outputs: This is fantastic
echo "This is {$great}";

// Works
echo "This square is {$square->width}00 centimeters broad.";

// Works, quoted keys only work using the curly brace syntax
echo "This works: {$arr['key']}";

// Works
echo "This works: {$arr[4][3]}";

// This is wrong for the same reason as $foo[bar] is wrong outside a string.
// PHP first looks for a constant named foo, and throws an error if not found.
// If the constant is found, its value (and not 'foo' itself) would be used
// for the array index.
echo "This is wrong: {$arr[foo][3]}";

// Works. When using multi-dimensional arrays, always use braces around arrays
// when inside of strings
echo "This works: {$arr['foo'][3]}";

// Works.
echo "This works: " . $arr['foo'][3];

echo "This works too: {$obj->values[3]->name}";

echo "This is the value of the var named $name: {${$name}}";

echo "This is the value of the var named by the return value of getName(): {${getName()}}";

echo "This is the value of the var named by the return value of \$object->getName(): {${$object->getName()}}";

// Won't work, outputs: This is the return value of getName(): {getName()}
echo "This is the return value of getName(): {getName()}";

// Won't work, outputs: C:\folder\{fantastic}.txt
echo "C:\folder\{$great}.txt"
// Works, outputs: C:\folder\fantastic.txt
echo "C:\\folder\\{$great}.txt"
?>

 It is also possible to access class properties using variables
 within strings using this syntax.

<?php
class foo {
 var $bar = 'I am bar.';
}

$foo = new foo();
$bar = 'bar';
$baz = array('foo', 'bar', 'baz', 'quux');
echo "{$foo->$bar}\n";
echo "{$foo->{$baz[1]}}\n";
?>

 The above example will output:

I am bar.
I am bar.

 Note:

 The value accessed from functions, method calls, static class variables,
 and class constants inside
 {$} will be interpreted as the name
 of a variable in the scope in which the string is defined. Using
 single curly braces ({}) will not work for
 accessing the return values of functions or methods or the
 values of class constants or static class variables.

<?php
// Show all errors.
error_reporting(E_ALL);

class beers {
 const softdrink = 'rootbeer';
 public static $ale = 'ipa';
}

$rootbeer = 'A & W';
$ipa = 'Alexander Keith\'s';

// This works; outputs: I'd like an A & W
echo "I'd like an {${beers::softdrink}}\n";

// This works too; outputs: I'd like an Alexander Keith's
echo "I'd like an {${beers::$ale}}\n";
?>

 String access and modification by character

 Characters within strings may be accessed and modified by
 specifying the zero-based offset of the desired character after the
 string using square array brackets, as in
 $str[42]. Think of a string as an
 array of characters for this purpose. The functions
 substr() and substr_replace()
 can be used when you want to extract or replace more than 1 character.

 Note:

 As of PHP 7.1.0, negative string offsets are also supported. These specify
 the offset from the end of the string.
 Formerly, negative offsets emitted E_NOTICE for reading
 (yielding an empty string) and E_WARNING for writing
 (leaving the string untouched).

 Note:

 Prior to PHP 8.0.0, strings could also be accessed using braces, as in
 $str{42}, for the same purpose.
 This curly brace syntax was deprecated as of PHP 7.4.0 and no longer supported as of PHP 8.0.0.

 Warning

 Writing to an out of range offset pads the string with spaces.
 Non-integer types are converted to integer.
 Illegal offset type emits E_WARNING.
 Only the first character of an assigned string is used.
 As of PHP 7.1.0, assigning an empty string throws a fatal error. Formerly,
 it assigned a NULL byte.

 Warning

 Internally, PHP strings are byte arrays. As a result, accessing or
 modifying a string using array brackets is not multi-byte safe, and
 should only be done with strings that are in a single-byte encoding such
 as ISO-8859-1.

 Note:

 As of PHP 7.1.0, applying the empty index operator on an empty string throws a fatal
 error. Formerly, the empty string was silently converted to an array.

 Example #17 Some string examples

<?php
// Get the first character of a string
$str = 'This is a test.';
$first = $str[0];

// Get the third character of a string
$third = $str[2];

// Get the last character of a string.
$str = 'This is still a test.';
$last = $str[strlen($str)-1];

// Modify the last character of a string
$str = 'Look at the sea';
$str[strlen($str)-1] = 'e';

?>

 String offsets have to either be integers or integer-like strings,
 otherwise a warning will be thrown.

 Example #18 Example of Illegal String Offsets

<?php
$str = 'abc';

var_dump($str['1']);
var_dump(isset($str['1']));

var_dump($str['1.0']);
var_dump(isset($str['1.0']));

var_dump($str['x']);
var_dump(isset($str['x']));

var_dump($str['1x']);
var_dump(isset($str['1x']));
?>

 The above example will output:

string(1) "b"
bool(true)

Warning: Illegal string offset '1.0' in /tmp/t.php on line 7
string(1) "b"
bool(false)

Warning: Illegal string offset 'x' in /tmp/t.php on line 9
string(1) "a"
bool(false)
string(1) "b"
bool(false)

 Note:

 Accessing variables of other types (not including arrays or objects
 implementing the appropriate interfaces) using [] or
 {} silently returns null.

 Note:

 Characters within string literals can be accessed
 using [] or {}.

 Note:

 Accessing characters within string literals using the
 {} syntax has been deprecated in PHP 7.4.
 This has been removed in PHP 8.0.

 Useful functions and operators

 Strings may be concatenated using the '.' (dot) operator. Note
 that the '+' (addition) operator will not work for this.
 See String operators for
 more information.

 There are a number of useful functions for string manipulation.

 See the string functions section for
 general functions, and the Perl-compatible regular
 expression functions for advanced find & replace functionality.

 There are also functions for URL strings, and
 functions to encrypt/decrypt strings
 (Sodium and
 Hash).

 Finally, see also the character type
 functions.

 Converting to string

 A value can be converted to a string using the
 (string) cast or the strval() function.
 String conversion is automatically done in the scope of an
 expression where a string is needed. This happens when using the
 echo or print functions, or when a
 variable is compared to a string. The sections on
 Types and
 Type Juggling will make
 the following clearer. See also the settype() function.

 A bool true value is converted to the string
 "1". bool false is converted to
 "" (the empty string). This allows conversion back and
 forth between bool and string values.

 An int or float is converted to a
 string representing the number textually (including the
 exponent part for floats). Floating point numbers can be
 converted using exponential notation (4.1E+6).

 Note:

 As of PHP 8.0.0, the decimal point character is always
 a period ("."). Prior to PHP 8.0.0,
 the decimal point character is defined in the script's locale (category
 LC_NUMERIC). See the setlocale() function.

 Arrays are always converted to the string
 "Array"; because of this, echo and
 print can not by themselves show the contents of an
 array. To view a single element, use a construction such as
 echo $arr['foo']. See below for tips on viewing the entire
 contents.

 In order to convert objects to string, the magic
 method __toString must be used.

 Resources are always converted to strings with the
 structure "Resource id #1", where 1
 is the resource number assigned to the resource by PHP at
 runtime. While the exact structure of this string should not be relied on
 and is subject to change, it will always be unique for a given resource
 within the lifetime of a script being executed (ie a Web request or CLI
 process) and won't be reused. To get a resource's type, use
 the get_resource_type() function.

 null is always converted to an empty string.

 As stated above, directly converting an array,
 object, or resource to a string does
 not provide any useful information about the value beyond its type. See the
 functions print_r() and var_dump() for
 more effective means of inspecting the contents of these types.

 Most PHP values can also be converted to strings for permanent
 storage. This method is called serialization, and is performed by the
 serialize() function.

 Details of the String Type

 The string in PHP is implemented as an array of bytes and an
 integer indicating the length of the buffer. It has no information about how
 those bytes translate to characters, leaving that task to the programmer.
 There are no limitations on the values the string can be composed of; in
 particular, bytes with value 0 (“NUL bytes”) are allowed
 anywhere in the string (however, a few functions, said in this manual not to
 be “binary safe”, may hand off the strings to libraries that ignore data
 after a NUL byte.)

 This nature of the string type explains why there is no separate “byte” type
 in PHP – strings take this role. Functions that return no textual data – for
 instance, arbitrary data read from a network socket – will still return
 strings.

 Given that PHP does not dictate a specific encoding for strings, one might
 wonder how string literals are encoded. For instance, is the string
 "á" equivalent to "\xE1" (ISO-8859-1),
 "\xC3\xA1" (UTF-8, C form),
 "\x61\xCC\x81" (UTF-8, D form) or any other possible
 representation? The answer is that string will be encoded in whatever fashion
 it is encoded in the script file. Thus, if the script is written in
 ISO-8859-1, the string will be encoded in ISO-8859-1 and so on. However,
 this does not apply if Zend Multibyte is enabled; in that case, the script
 may be written in an arbitrary encoding (which is explicitly declared or is
 detected) and then converted to a certain internal encoding, which is then
 the encoding that will be used for the string literals.
 Note that there are some constraints on the encoding of the script (or on the
 internal encoding, should Zend Multibyte be enabled) – this almost always
 means that this encoding should be a compatible superset of ASCII, such as
 UTF-8 or ISO-8859-1. Note, however, that state-dependent encodings where
 the same byte values can be used in initial and non-initial shift states
 may be problematic.

 Of course, in order to be useful, functions that operate on text may have to
 make some assumptions about how the string is encoded. Unfortunately, there
 is much variation on this matter throughout PHP’s functions:

 	

 Some functions assume that the string is encoded in some (any) single-byte
 encoding, but they do not need to interpret those bytes as specific
 characters. This is case of, for instance, substr(),
 strpos(), strlen() or
 strcmp(). Another way to think of these functions is
 that operate on memory buffers, i.e., they work with bytes and byte
 offsets.

 	

 Other functions are passed the encoding of the string, possibly they also
 assume a default if no such information is given. This is the case of
 htmlentities() and the majority of the
 functions in the mbstring extension.

 	

 Others use the current locale (see setlocale()), but
 operate byte-by-byte.

 	

 Finally, they may just assume the string is using a specific encoding,
 usually UTF-8. This is the case of most functions in the
 intl extension and in the
 PCRE extension
 (in the last case, only when the u modifier is used).

 Ultimately, this means writing correct programs using Unicode depends on
 carefully avoiding functions that will not work and that most likely will
 corrupt the data and using instead the functions that do behave correctly,
 generally from the intl and
 mbstring extensions.
 However, using functions that can handle Unicode encodings is just the
 beginning. No matter the functions the language provides, it is essential to
 know the Unicode specification. For instance, a program that assumes there is
 only uppercase and lowercase is making a wrong assumption.

 Numeric strings

 A PHP string is considered numeric if it can be interpreted as
 an int or a float.

 Formally as of PHP 8.0.0:

WHITESPACES \s*
LNUM [0-9]+
DNUM ([0-9]*[\.]{LNUM}) | ({LNUM}[\.][0-9]*)
EXPONENT_DNUM (({LNUM} | {DNUM}) [eE][+-]? {LNUM})
INT_NUM_STRING {WHITESPACES} [+-]? {LNUM} {WHITESPACES}
FLOAT_NUM_STRING {WHITESPACES} [+-]? ({DNUM} | {EXPONENT_DNUM}) {WHITESPACES}
NUM_STRING ({INT_NUM_STRING} | {FLOAT_NUM_STRING})

 PHP also has a concept of leading numeric strings.
 This is simply a string which starts like a numeric string followed by
 any characters.

 Note:

 Any string that contains the letter E (case insensitive)
 bounded by numbers will be seen as a number expressed in scientific notation.
 This can produce unexpected results.

<?php
var_dump("0D1" == "000"); // false, "0D1" is not scientific notation
var_dump("0E1" == "000"); // true, "0E1" is 0 * (10 ^ 1), or 0
var_dump("2E1" == "020"); // true, "2E1" is 2 * (10 ^ 1), or 20
?>

 Strings used in numeric contexts

 When a string needs to be evaluated as number (e.g. arithmetic
 operations, int type declaration, etc.) the following
 steps are taken to determine the outcome:

 	

 If the string is numeric, resolve to an int if
 the string is an integer numeric string and fits into the
 limits of the int type limits (as defined by
 PHP_INT_MAX), otherwise resolve to a
 float.

 	

 If the context allows leading numeric strings and the string
 is one, resolve to an int if the leading part of the
 string is an integer numeric string and fits into the
 limits of the int type limits (as defined by
 PHP_INT_MAX), otherwise resolve to a
 float.
 Additionally an error of level E_WARNING is raised.

 	

 The string is not numeric, throw a
 TypeError.

 Behavior prior to PHP 8.0.0

 Prior to PHP 8.0.0, a string was considered numeric only if it
 had leading whitespaces, if it had
 trailing whitespaces then the string was considered to
 be leading numeric.

 Prior to PHP 8.0.0, when a string was used in a numeric context it would
 perform the same steps as above with the following differences:

 	

 The usage of a leading numeric string would raise an
 E_NOTICE instead of an E_WARNING.

 	

 If the string is not numeric, an E_WARNING was
 raised and the value 0 would be returned.

 Prior to PHP 7.1.0, neither E_NOTICE
 nor E_WARNING was raised.

<?php
$foo = 1 + "10.5"; // $foo is float (11.5)
$foo = 1 + "-1.3e3"; // $foo is float (-1299)
$foo = 1 + "bob-1.3e3"; // TypeError as of PHP 8.0.0, $foo is integer (1) previously
$foo = 1 + "bob3"; // TypeError as of PHP 8.0.0, $foo is integer (1) previously
$foo = 1 + "10 Small Pigs"; // $foo is integer (11) and an E_WARNING is raised in PHP 8.0.0, E_NOTICE previously
$foo = 4 + "10.2 Little Piggies"; // $foo is float (14.2) and an E_WARNING is raised in PHP 8.0.0, E_NOTICE previously
$foo = "10.0 pigs " + 1; // $foo is float (11) and an E_WARNING is raised in PHP 8.0.0, E_NOTICE previously
$foo = "10.0 pigs " + 1.0; // $foo is float (11) and an E_WARNING is raised in PHP 8.0.0, E_NOTICE previously
?>

 Arrays

 An array in PHP is actually an ordered map. A map is a type that
 associates values to keys. This type
 is optimized for several different uses; it can be treated as an array,
 list (vector), hash table (an implementation of a map), dictionary,
 collection, stack, queue, and probably more. As array values can
 be other arrays, trees and multidimensional arrays
 are also possible.

 Explanation of those data structures is beyond the scope of this manual, but
 at least one example is provided for each of them. For more information, look
 towards the considerable literature that exists about this broad topic.

 Syntax

 Specifying with array()

 An array can be created using the array()
 language construct. It takes any number of comma-separated
 key => value pairs
 as arguments.

array(
 key => value,
 key2 => value2,
 key3 => value3,
 ...
)

 The comma after the last array element is optional and can be omitted. This is usually done
 for single-line arrays, i.e. array(1, 2) is preferred over
 array(1, 2,). For multi-line arrays on the other hand the trailing comma
 is commonly used, as it allows easier addition of new elements at the end.

 Note:

 A short array syntax exists which replaces
 array() with [].

 Example #1 A simple array

<?php
$array = array(
 "foo" => "bar",
 "bar" => "foo",
);

// Using the short array syntax
$array = [
 "foo" => "bar",
 "bar" => "foo",
];
?>

 The key can either be an int
 or a string. The value can be
 of any type.

 Additionally the following key casts will occur:

 	

 Strings containing valid decimal ints, unless the number is preceded by a + sign, will be cast to the
 int type. E.g. the key "8" will actually be
 stored under 8. On the other hand "08" will
 not be cast, as it isn't a valid decimal integer.

 	

 Floats are also cast to ints, which means that the
 fractional part will be truncated. E.g. the key 8.7 will actually
 be stored under 8.

 	

 Bools are cast to ints, too, i.e. the key
 true will actually be stored under 1
 and the key false under 0.

 	

 Null will be cast to the empty string, i.e. the key
 null will actually be stored under "".

 	

 Arrays and objects can not be used as keys.
 Doing so will result in a warning: Illegal offset type.

 If multiple elements in the array declaration use the same key, only the last one
 will be used as all others are overwritten.

 Example #2 Type Casting and Overwriting example

<?php
$array = array(
 1 => "a",
 "1" => "b",
 1.5 => "c",
 true => "d",
);
var_dump($array);
?>

 The above example will output:

array(1) {
 [1]=>
 string(1) "d"
}

 As all the keys in the above example are cast to 1, the value will be overwritten
 on every new element and the last assigned value "d" is the only one left over.

 PHP arrays can contain int and string keys at the same time
 as PHP does not distinguish between indexed and associative arrays.

 Example #3 Mixed int and string keys

<?php
$array = array(
 "foo" => "bar",
 "bar" => "foo",
 100 => -100,
 -100 => 100,
);
var_dump($array);
?>

 The above example will output:

array(4) {
 ["foo"]=>
 string(3) "bar"
 ["bar"]=>
 string(3) "foo"
 [100]=>
 int(-100)
 [-100]=>
 int(100)
}

 The key is optional. If it is not specified, PHP will
 use the increment of the largest previously used int key.

 Example #4 Indexed arrays without key

<?php
$array = array("foo", "bar", "hello", "world");
var_dump($array);
?>

 The above example will output:

array(4) {
 [0]=>
 string(3) "foo"
 [1]=>
 string(3) "bar"
 [2]=>
 string(5) "hello"
 [3]=>
 string(5) "world"
}

 It is possible to specify the key only for some elements and leave it out for others:

 Example #5 Keys not on all elements

<?php
$array = array(
 "a",
 "b",
 6 => "c",
 "d",
);
var_dump($array);
?>

 The above example will output:

array(4) {
 [0]=>
 string(1) "a"
 [1]=>
 string(1) "b"
 [6]=>
 string(1) "c"
 [7]=>
 string(1) "d"
}

 As you can see the last value "d" was assigned the key
 7. This is because the largest integer key before that
 was 6.

 Example #6 Complex Type Casting and Overwriting example

 This example includes all variations of type casting of keys and overwriting
 of elements.

<?php
$array = array(
 1 => 'a',
 '1' => 'b', // the value "a" will be overwritten by "b"
 1.5 => 'c', // the value "b" will be overwritten by "c"
 -1 => 'd',
 '01' => 'e', // as this is not an integer string it will NOT override the key for 1
 '1.5' => 'f', // as this is not an integer string it will NOT override the key for 1
 true => 'g', // the value "c" will be overwritten by "g"
 false => 'h',
 '' => 'i',
 null => 'j', // the value "i" will be overwritten by "j"
 'k', // value "k" is assigned the key 2. This is because the largest integer key before that was 1
 2 => 'l', // the value "k" will be overwritten by "l"
);

var_dump($array);
?>

 The above example will output:

array(7) {
 [1]=>
 string(1) "g"
 [-1]=>
 string(1) "d"
 ["01"]=>
 string(1) "e"
 ["1.5"]=>
 string(1) "f"
 [0]=>
 string(1) "h"
 [""]=>
 string(1) "j"
 [2]=>
 string(1) "l"
}

 Accessing array elements with square bracket syntax

 Array elements can be accessed using the array[key] syntax.

 Example #7 Accessing array elements

<?php
$array = array(
 "foo" => "bar",
 42 => 24,
 "multi" => array(
 "dimensional" => array(
 "array" => "foo"
)
)
);

var_dump($array["foo"]);
var_dump($array[42]);
var_dump($array["multi"]["dimensional"]["array"]);
?>

 The above example will output:

string(3) "bar"
int(24)
string(3) "foo"

 Note:

 Prior to PHP 8.0.0, square brackets and curly braces could be used interchangeably
 for accessing array elements (e.g. $array[42] and $array{42}
 would both do the same thing in the example above).
 The curly brace syntax was deprecated as of PHP 7.4.0 and no longer supported as of PHP 8.0.0.

 Example #8 Array dereferencing

<?php
function getArray() {
 return array(1, 2, 3);
}

$secondElement = getArray()[1];
?>

 Note:

 Attempting to access an array key which has not been defined is
 the same as accessing any other undefined variable:
 an E_WARNING-level error message
 (E_NOTICE-level prior to PHP 8.0.0) will be
 issued, and the result will be null.

 Note:

 Array dereferencing a scalar value which is not a string
 yields null. Prior to PHP 7.4.0, that did not issue an error message.
 As of PHP 7.4.0, this issues E_NOTICE;
 as of PHP 8.0.0, this issues E_WARNING.

 Creating/modifying with square bracket syntax

 An existing array can be modified by explicitly setting values
 in it.

 This is done by assigning values to the array, specifying the
 key in brackets. The key can also be omitted, resulting in an empty pair of
 brackets ([]).

$arr[key] = value;
$arr[] = value;
// key may be an int or string
// value may be any value of any type

 If $arr doesn't exist yet or is set to null or false, it will be created, so this is
 also an alternative way to create an array. This practice is
 however discouraged because if $arr already contains
 some value (e.g. string from request variable) then this
 value will stay in the place and [] may actually stand
 for string access
 operator. It is always better to initialize a variable by a direct
 assignment.

 Note:

 As of PHP 7.1.0, applying the empty index operator on a string throws a fatal
 error. Formerly, the string was silently converted to an array.

 Note:

 As of PHP 8.1.0, creating a new array from false value is deprecated.
 Creating a new array from null and undefined values is still allowed.

 To change a certain
 value, assign a new value to that element using its key. To remove a
 key/value pair, call the unset() function on it.

<?php
$arr = array(5 => 1, 12 => 2);

$arr[] = 56; // This is the same as $arr[13] = 56;
 // at this point of the script

$arr["x"] = 42; // This adds a new element to
 // the array with key "x"

unset($arr[5]); // This removes the element from the array

unset($arr); // This deletes the whole array
?>

 Note:

 As mentioned above, if no key is specified, the maximum of the existing
 int indices is taken, and the new key will be that maximum
 value plus 1 (but at least 0). If no int indices exist yet, the key will
 be 0 (zero).

 Note that the maximum integer key used for this need not
 currently exist in the array. It need only have
 existed in the array at some time since the last time the
 array was re-indexed. The following example illustrates:

<?php
// Create a simple array.
$array = array(1, 2, 3, 4, 5);
print_r($array);

// Now delete every item, but leave the array itself intact:
foreach ($array as $i => $value) {
 unset($array[$i]);
}
print_r($array);

// Append an item (note that the new key is 5, instead of 0).
$array[] = 6;
print_r($array);

// Re-index:
$array = array_values($array);
$array[] = 7;
print_r($array);
?>

 The above example will output:

Array
(
 [0] => 1
 [1] => 2
 [2] => 3
 [3] => 4
 [4] => 5
)
Array
(
)
Array
(
 [5] => 6
)
Array
(
 [0] => 6
 [1] => 7
)

 Array destructuring

 Arrays can be destructured using the [] (as of PHP 7.1.0) or
 list() language constructs. These
 constructs can be used to destructure an array into distinct variables.

<?php
$source_array = ['foo', 'bar', 'baz'];

[$foo, $bar, $baz] = $source_array;

echo $foo; // prints "foo"
echo $bar; // prints "bar"
echo $baz; // prints "baz"
?>

 Array destructuring can be used in foreach to destructure
 a multi-dimensional array while iterating over it.

<?php
$source_array = [
 [1, 'John'],
 [2, 'Jane'],
];

foreach ($source_array as [$id, $name]) {
 // logic here with $id and $name
}
?>

 Array elements will be ignored if the variable is not provided. Array
 destructuring always starts at index 0.

<?php
$source_array = ['foo', 'bar', 'baz'];

// Assign the element at index 2 to the variable $baz
[, , $baz] = $source_array;

echo $baz; // prints "baz"
?>

 As of PHP 7.1.0, associative arrays can be destructured too. This also
 allows for easier selection of the right element in numerically indexed
 arrays as the index can be explicitly specified.

<?php
$source_array = ['foo' => 1, 'bar' => 2, 'baz' => 3];

// Assign the element at index 'baz' to the variable $three
['baz' => $three] = $source_array;

echo $three; // prints 3

$source_array = ['foo', 'bar', 'baz'];

// Assign the element at index 2 to the variable $baz
[2 => $baz] = $source_array;

echo $baz; // prints "baz"
?>

 Array destructuring can be used for easy swapping of two variables.

<?php
$a = 1;
$b = 2;

[$b, $a] = [$a, $b];

echo $a; // prints 2
echo $b; // prints 1
?>

 Note:

 The spread operator (...) is not supported in assignments.

 Note:

 Attempting to access an array key which has not been defined is
 the same as accessing any other undefined variable:
 an E_WARNING-level error message
 (E_NOTICE-level prior to PHP 8.0.0) will be
 issued, and the result will be null.

 Useful functions

 There are quite a few useful functions for working with arrays. See the
 array functions section.

 Note:

 The unset() function allows removing keys from an
 array. Be aware that the array will not be
 reindexed. If a true "remove and shift" behavior is desired, the
 array can be reindexed using the
 array_values() function.

<?php
$a = array(1 => 'one', 2 => 'two', 3 => 'three');
unset($a[2]);
/* will produce an array that would have been defined as
 $a = array(1 => 'one', 3 => 'three');
 and NOT
 $a = array(1 => 'one', 2 =>'three');
*/

$b = array_values($a);
// Now $b is array(0 => 'one', 1 =>'three')
?>

 The foreach control
 structure exists specifically for arrays. It provides an easy
 way to traverse an array.

 Array do's and don'ts

 Why is $foo[bar] wrong?

 Always use quotes around a string literal array index. For example,
 $foo['bar'] is correct, while
 $foo[bar] is not. But why? It is common to encounter this
 kind of syntax in old scripts:

<?php
$foo[bar] = 'enemy';
echo $foo[bar];
// etc
?>

 This is wrong, but it works. The reason is that this code has an undefined
 constant (bar) rather than a string ('bar' - notice the
 quotes). It works because PHP automatically converts a
 bare string (an unquoted string which does
 not correspond to any known symbol) into a string which
 contains the bare string. For instance, if there is no defined
 constant named bar, then PHP will substitute in the
 string 'bar' and use that.

 Warning

 The fallback to treat an undefined constant as bare string issues an error
 of level E_NOTICE.
 This has been deprecated as of PHP 7.2.0, and issues an error
 of level E_WARNING.
 As of PHP 8.0.0, it has been removed and throws an
 Error exception.

 Note:

 This does not mean to always quote the key. Do not
 quote keys which are constants or
 variables, as this will prevent
 PHP from interpreting them.

<?php
error_reporting(E_ALL);
ini_set('display_errors', true);
ini_set('html_errors', false);
// Simple array:
$array = array(1, 2);
$count = count($array);
for ($i = 0; $i < $count; $i++) {
 echo "\nChecking $i: \n";
 echo "Bad: " . $array['$i'] . "\n";
 echo "Good: " . $array[$i] . "\n";
 echo "Bad: {$array['$i']}\n";
 echo "Good: {$array[$i]}\n";
}
?>

 The above example will output:

Checking 0:
Notice: Undefined index: $i in /path/to/script.html on line 9
Bad:
Good: 1
Notice: Undefined index: $i in /path/to/script.html on line 11
Bad:
Good: 1

Checking 1:
Notice: Undefined index: $i in /path/to/script.html on line 9
Bad:
Good: 2
Notice: Undefined index: $i in /path/to/script.html on line 11
Bad:
Good: 2

 More examples to demonstrate this behaviour:

<?php
// Show all errors
error_reporting(E_ALL);

$arr = array('fruit' => 'apple', 'veggie' => 'carrot');

// Correct
print $arr['fruit']; // apple
print $arr['veggie']; // carrot

// Incorrect. This works but also throws a PHP error of level E_NOTICE because
// of an undefined constant named fruit
//
// Notice: Use of undefined constant fruit - assumed 'fruit' in...
print $arr[fruit]; // apple

// This defines a constant to demonstrate what's going on. The value 'veggie'
// is assigned to a constant named fruit.
define('fruit', 'veggie');

// Notice the difference now
print $arr['fruit']; // apple
print $arr[fruit]; // carrot

// The following is okay, as it's inside a string. Constants are not looked for
// within strings, so no E_NOTICE occurs here
print "Hello $arr[fruit]"; // Hello apple

// With one exception: braces surrounding arrays within strings allows constants
// to be interpreted
print "Hello {$arr[fruit]}"; // Hello carrot
print "Hello {$arr['fruit']}"; // Hello apple

// This will not work, and will result in a parse error, such as:
// Parse error: parse error, expecting T_STRING' or T_VARIABLE' or T_NUM_STRING'
// This of course applies to using superglobals in strings as well
print "Hello $arr['fruit']";
print "Hello $_GET['foo']";

// Concatenation is another option
print "Hello " . $arr['fruit']; // Hello apple
?>

 When error_reporting is set to
 show E_NOTICE level errors (by setting it to
 E_ALL, for example), such uses will become immediately
 visible. By default,
 error_reporting is set not to
 show notices.

 As stated in the syntax
 section, what's inside the square brackets ('[' and
 ']') must be an expression. This means that code like
 this works:

<?php
echo $arr[somefunc($bar)];
?>

 This is an example of using a function return value as the array index. PHP
 also knows about constants:

<?php
$error_descriptions[E_ERROR] = "A fatal error has occurred";
$error_descriptions[E_WARNING] = "PHP issued a warning";
$error_descriptions[E_NOTICE] = "This is just an informal notice";
?>

 Note that E_ERROR is also a valid identifier, just like
 bar in the first example. But the last example is in fact
 the same as writing:

<?php
$error_descriptions[1] = "A fatal error has occurred";
$error_descriptions[2] = "PHP issued a warning";
$error_descriptions[8] = "This is just an informal notice";
?>

 because E_ERROR equals 1, etc.

 So why is it bad then?

 At some point in the future, the PHP team might want to add another
 constant or keyword, or a constant in other code may interfere. For
 example, it is already wrong to use the words empty and
 default this way, since they are
 reserved keywords.

 Note:

 To reiterate, inside a double-quoted string, it's valid to
 not surround array indexes with quotes so "$foo[bar]"
 is valid. See the above examples for details on why as well as the section
 on variable parsing in
 strings.

 Converting to array

 For any of the types int, float,
 string, bool and resource,
 converting a value to an array results in an array with a single
 element with index zero and the value of the scalar which was converted. In
 other words, (array)$scalarValue is exactly the same as
 array($scalarValue).

 If an object is converted to an array, the result
 is an array whose elements are the object's
 properties. The keys are the member variable names, with a few notable
 exceptions: integer properties are unaccessible;
 private variables have the class name prepended to the variable
 name; protected variables have a '*' prepended to the variable name. These
 prepended values have NUL bytes on either side.
 Uninitialized typed properties
 are silently discarded.

 <?php

class A {
 private $B;
 protected $C;
 public $D;
 function __construct()
 {
 $this->{1} = null;
 }
}

var_export((array) new A());
?>

 The above example will output:

array (
 '' . "\0" . 'A' . "\0" . 'B' => NULL,
 '' . "\0" . '*' . "\0" . 'C' => NULL,
 'D' => NULL,
 1 => NULL,
)

 These NUL can result in some unexpected behaviour:

<?php

class A {
 private $A; // This will become '\0A\0A'
}

class B extends A {
 private $A; // This will become '\0B\0A'
 public $AA; // This will become 'AA'
}

var_dump((array) new B());
?>

 The above example will output:

array(3) {
 ["BA"]=>
 NULL
 ["AA"]=>
 NULL
 ["AA"]=>
 NULL
}

 The above will appear to have two keys named 'AA', although one of them is
 actually named '\0A\0A'.

 Converting null to an array results in an empty
 array.

 Comparing

 It is possible to compare arrays with the array_diff()
 function and with
 array operators.

 Array unpacking

 An array prefixed by ... will be expanded in place during array definition.
 Only arrays and objects which implement Traversable can be expanded.
 Array unpacking with ... is available as of PHP 7.4.0.

 It's possible to expand multiple times, and add normal elements before or after the ... operator:

 Example #9 Simple array unpacking

<?php
// Using short array syntax.
// Also, works with array() syntax.
$arr1 = [1, 2, 3];
$arr2 = [...$arr1]; //[1, 2, 3]
$arr3 = [0, ...$arr1]; //[0, 1, 2, 3]
$arr4 = [...$arr1, ...$arr2, 111]; //[1, 2, 3, 1, 2, 3, 111]
$arr5 = [...$arr1, ...$arr1]; //[1, 2, 3, 1, 2, 3]

function getArr() {
 return ['a', 'b'];
}
$arr6 = [...getArr(), 'c' => 'd']; //['a', 'b', 'c' => 'd']
?>

 Unpacking an array with the ... operator follows the semantics of the array_merge() function.
 That is, later string keys overwrite earlier ones and integer keys are renumbered:

 Example #10 Array unpacking with duplicate key

<?php
// string key
$arr1 = ["a" => 1];
$arr2 = ["a" => 2];
$arr3 = ["a" => 0, ...$arr1, ...$arr2];
var_dump($arr3); // ["a" => 2]

// integer key
$arr4 = [1, 2, 3];
$arr5 = [4, 5, 6];
$arr6 = [...$arr4, ...$arr5];
var_dump($arr6); // [1, 2, 3, 4, 5, 6]
// Which is [0 => 1, 1 => 2, 2 => 3, 3 => 4, 4 => 5, 5 => 6]
// where the original integer keys have not been retained.
?>

 Note:

 Keys that are neither integers nor strings throw a TypeError.
 Such keys can only be generated by a Traversable object.

 Note:

 Prior to PHP 8.1, unpacking an array which has a string key is not supported:

<?php

$arr1 = [1, 2, 3];
$arr2 = ['a' => 4];
$arr3 = [...$arr1, ...$arr2];
// Fatal error: Uncaught Error: Cannot unpack array with string keys in example.php:5

$arr4 = [1, 2, 3];
$arr5 = [4, 5];
$arr6 = [...$arr4, ...$arr5]; // works. [1, 2, 3, 4, 5]
?>

 Examples

 The array type in PHP is very versatile. Here are some examples:

<?php
// This:
$a = array('color' => 'red',
 'taste' => 'sweet',
 'shape' => 'round',
 'name' => 'apple',
 4 // key will be 0
);

$b = array('a', 'b', 'c');

// . . .is completely equivalent with this:
$a = array();
$a['color'] = 'red';
$a['taste'] = 'sweet';
$a['shape'] = 'round';
$a['name'] = 'apple';
$a[] = 4; // key will be 0

$b = array();
$b[] = 'a';
$b[] = 'b';
$b[] = 'c';

// After the above code is executed, $a will be the array
// array('color' => 'red', 'taste' => 'sweet', 'shape' => 'round',
// 'name' => 'apple', 0 => 4), and $b will be the array
// array(0 => 'a', 1 => 'b', 2 => 'c'), or simply array('a', 'b', 'c').
?>

 Example #11 Using array()

<?php
// Array as (property-)map
$map = array('version' => 4,
 'OS' => 'Linux',
 'lang' => 'english',
 'short_tags' => true
);

// strictly numerical keys
$array = array(7,
 8,
 0,
 156,
 -10
);
// this is the same as array(0 => 7, 1 => 8, ...)

$switching = array(10, // key = 0
 5 => 6,
 3 => 7,
 'a' => 4,
 11, // key = 6 (maximum of integer-indices was 5)
 '8' => 2, // key = 8 (integer!)
 '02' => 77, // key = '02'
 0 => 12 // the value 10 will be overwritten by 12
);

// empty array
$empty = array();
?>

 Example #12 Collection

<?php
$colors = array('red', 'blue', 'green', 'yellow');

foreach ($colors as $color) {
 echo "Do you like $color?\n";
}

?>

 The above example will output:

Do you like red?
Do you like blue?
Do you like green?
Do you like yellow?

 Changing the values of the array directly is possible
 by passing them by reference.

 Example #13 Changing element in the loop

<?php
foreach ($colors as &$color) {
 $color = mb_strtoupper($color);
}
unset($color); /* ensure that following writes to
$color will not modify the last array element */

print_r($colors);
?>

 The above example will output:

Array
(
 [0] => RED
 [1] => BLUE
 [2] => GREEN
 [3] => YELLOW
)

 This example creates a one-based array.

 Example #14 One-based index

<?php
$firstquarter = array(1 => 'January', 'February', 'March');
print_r($firstquarter);
?>

 The above example will output:

Array
(
 [1] => 'January'
 [2] => 'February'
 [3] => 'March'
)

 Example #15 Filling an array

<?php
// fill an array with all items from a directory
$handle = opendir('.');
while (false !== ($file = readdir($handle))) {
 $files[] = $file;
}
closedir($handle);
?>

 Arrays are ordered. The order can be changed using various
 sorting functions. See the array functions
 section for more information. The count() function can be
 used to count the number of items in an array.

 Example #16 Sorting an array

<?php
sort($files);
print_r($files);
?>

 Because the value of an array can be anything, it can also be
 another array. This enables the creation of recursive and
 multi-dimensional arrays.

 Example #17 Recursive and multi-dimensional arrays

<?php
$fruits = array ("fruits" => array ("a" => "orange",
 "b" => "banana",
 "c" => "apple"
),
 "numbers" => array (1,
 2,
 3,
 4,
 5,
 6
),
 "holes" => array ("first",
 5 => "second",
 "third"
)
);

// Some examples to address values in the array above
echo $fruits["holes"][5]; // prints "second"
echo $fruits["fruits"]["a"]; // prints "orange"
unset($fruits["holes"][0]); // remove "first"

// Create a new multi-dimensional array
$juices["apple"]["green"] = "good";
?>

 Array assignment always involves value copying. Use the
 reference operator to copy an
 array by reference.

<?php
$arr1 = array(2, 3);
$arr2 = $arr1;
$arr2[] = 4; // $arr2 is changed,
 // $arr1 is still array(2, 3)

$arr3 = &$arr1;
$arr3[] = 4; // now $arr1 and $arr3 are the same
?>

 Objects

 Object Initialization

 To create a new object, use the new statement
 to instantiate a class:

<?php
class foo
{
 function do_foo()
 {
 echo "Doing foo.";
 }
}

$bar = new foo;
$bar->do_foo();
?>

 For a full discussion, see the
 Classes and Objects chapter.

 Converting to object

 If an object is converted to an object, it is not
 modified. If a value of any other type is converted to an
 object, a new instance of the stdClass
 built-in class is created. If the value was null, the new instance will be
 empty. An array converts to an object with properties
 named by keys and corresponding values. Note that in this case before PHP 7.2.0 numeric keys
 have been inaccessible unless iterated.

<?php
$obj = (object) array('1' => 'foo');
var_dump(isset($obj->{'1'})); // outputs 'bool(true)' as of PHP 7.2.0; 'bool(false)' previously
var_dump(key($obj)); // outputs 'string(1) "1"' as of PHP 7.2.0; 'int(1)' previously
?>

 For any other value, a member variable named scalar will contain
 the value.

<?php
$obj = (object) 'ciao';
echo $obj->scalar; // outputs 'ciao'
?>

 Enumerations

 (PHP 8 >= 8.1.0)

 Basic Enumerations

 Enumerations are a restricting layer on top of classes and class constants,
 intended to provide a way to define a closed set of possible values for a type.

<?php
enum Suit
{
 case Hearts;
 case Diamonds;
 case Clubs;
 case Spades;
}

function do_stuff(Suit $s)
{
 // ...
}

do_stuff(Suit::Spades);
?>

 For a full discussion, see the
 Enumerations chapter.

 Casting

 If an enum is converted to an object, it is not
 modified. If an enum is converted to an array,
 an array with a single name key (for Pure enums) or
 an array with both name and value keys
 (for Backed enums) is created. All other cast types will result in an error.

 Resources

 A resource is a special variable, holding a reference to an
 external resource. Resources are created and used by special functions. See
 the appendix for a listing of all these
 functions and the corresponding resource types.

 See also the get_resource_type() function.

 Converting to resource

 As resource variables hold special handles to opened files,
 database connections, image canvas areas and the like, converting to a
 resource makes no sense.

 Freeing resources

 Thanks to the reference-counting system being part of Zend Engine,
 a resource with no more references to it is detected
 automatically, and it is freed by the garbage collector. For this reason, it
 is rarely necessary to free the memory manually.

 Note:

 Persistent database links are an exception to this rule. They are
 not destroyed by the garbage collector. See the
 persistent
 connections section for more information.

 Callbacks / Callables

 Callbacks can be denoted by the callable type declaration.

 Some functions like call_user_func() or
 usort() accept user-defined callback functions as a
 parameter. Callback functions can not only be simple functions, but also
 object methods, including static class methods.

 Passing

 A PHP function is passed by its name as a string. Any built-in
 or user-defined function can be used, except language constructs such as:
 array(), echo,
 empty(), eval(),
 exit(), isset(),
 list(), print or
 unset().

 A method of an instantiated object is passed as an
 array containing an object at index 0 and the
 method name at index 1. Accessing protected and private methods from
 within a class is allowed.

 Static class methods can also be passed without instantiating an
 object of that class by either, passing the class name
 instead of an object at index 0, or passing
 'ClassName::methodName'.

 Apart from common user-defined function,
 anonymous functions and
 arrow functions can also be
 passed to a callback parameter.

 Note:

 As of PHP 8.1.0, anonymous functions can also be created using the first class callable syntax.

 Generally, any object implementing __invoke() can also
 be passed to a callback parameter.

 Example #1
 Callback function examples

<?php

// An example callback function
function my_callback_function() {
 echo 'hello world!';
}

// An example callback method
class MyClass {
 static function myCallbackMethod() {
 echo 'Hello World!';
 }
}

// Type 1: Simple callback
call_user_func('my_callback_function');

// Type 2: Static class method call
call_user_func(array('MyClass', 'myCallbackMethod'));

// Type 3: Object method call
$obj = new MyClass();
call_user_func(array($obj, 'myCallbackMethod'));

// Type 4: Static class method call
call_user_func('MyClass::myCallbackMethod');

// Type 5: Relative static class method call
class A {
 public static function who() {
 echo "A\n";
 }
}

class B extends A {
 public static function who() {
 echo "B\n";
 }
}

call_user_func(array('B', 'parent::who')); // A, deprecated as of PHP 8.2.0

// Type 6: Objects implementing __invoke can be used as callables
class C {
 public function __invoke($name) {
 echo 'Hello ', $name, "\n";
 }
}

$c = new C();
call_user_func($c, 'PHP!');
?>

 Example #2
 Callback example using a Closure

<?php
// Our closure
$double = function($a) {
 return $a * 2;
};

// This is our range of numbers
$numbers = range(1, 5);

// Use the closure as a callback here to
// double the size of each element in our
// range
$new_numbers = array_map($double, $numbers);

print implode(' ', $new_numbers);
?>

 The above example will output:

2 4 6 8 10

 Note: Callbacks registered
with functions such as call_user_func() and call_user_func_array() will not be
called if there is an uncaught exception thrown in a previous callback.

 Mixed

 The mixed type accepts every value. It is equivalent to the
 union type

 object|resource|array|string|float|int|bool|null.
 Available as of PHP 8.0.0.

 mixed is, in type theory parlance, the top type.
 Meaning every other type is a subtype of it.

 Void

 void is a return-only type declaration indicating the
 function does not return a value, but the function may still terminate.
 Therefore, it cannot be part of a
 union type
 declaration. Available as of PHP 7.1.0.

 Note:

 Even if a function has a return type of void it will
 still return a value, this value is always null.

 Never

 never is a return-only type indicating the function
 does not terminate. This means that it either calls exit(),
 throws an exception, or is an infinite loop.
 Therefore, it cannot be part of a
 union type
 declaration. Available as of PHP 8.1.0.

 never is, in type theory parlance, the bottom type.
 Meaning it is the subtype of every other type and can replace any other
 return type during inheritance.

 Relative class types

 These types declarations can only be used within classes.

 self

 The value must be an instanceof the same class as the one
 in which the type declaration is used.

 parent

 The value must be an instanceof a parent of the class
 in which the type declaration is used.

 static

 static is a return-only type which requires that the
 value returned must be an instanceof the same class as the one
 the method is called in.
 Available as of PHP 8.0.0.

 Value types

 Value types are those which not only check the type of a value but also
 the value itself. PHP has support for two value types:
 false as of PHP 8.0.0, and true
 as of PHP 8.2.0.

 Warning

 Prior to PHP 8.2.0 the false type could only be used as part of a
 union type.

 Note:

 It is not possible to define custom value types. Consider using an
 enumerations instead.

 Iterables

 Iterable is a built-in compile time type alias for

 array|Traversable.
 From its introduction in PHP 7.1.0 and prior to PHP 8.2.0,
 iterable was a built-in pseudo-type that acted as the
 aforementioned type alias and can be used as a type declaration.
 An iterable type can be used in foreach and with
 yield from within a
 generator.

 Note:

 Functions declaring iterable as a return type may also be generators.

 Example #1
 Iterable generator return type example

 <?php

function gen(): iterable {
 yield 1;
 yield 2;
 yield 3;
}

?>

 Type declarations

 Type declarations can be added to function arguments, return values,
 and, as of PHP 7.4.0, class properties. They ensure that the value
 is of the specified type at call time, otherwise a
 TypeError is thrown.

 Every single type that PHP supports, with the exception of
 resource can be used within a user-land type declaration.
 This page contains a changelog of availability of the different types
 and documentation about usage of them in type declarations.

 Note:

 When a class implements an interface method or reimplements a method which
 has already been defined by a parent class, it has to be compatible with the
 aforementioned definition.
 A method is compatible if it follows the
 variance rules.

 Changelog

 	Version
 	Description

 	8.3.0
 	
 Support for class, interface, trait, and enum constant typing has been added.

 	8.2.0
 	
 Support for DNF types has been added.

 	8.2.0
 	
 Support for the literal type true has been added.

 	8.2.0
 	
 The types null and false can now be used standalone.

 	8.1.0
 	
 Support for intersection types has been added.

 	8.1.0
 	
 Returning by reference from a void function is now deprecated.

 	8.1.0
 	
 Support for the return only type never has been added.

 	8.0.0
 	
 Support for mixed has been added.

 	8.0.0
 	
 Support for the return only type static has been added.

 	8.0.0
 	
 Support for union types has been added.

 	7.4.0
 	
 Support for class properties typing has been added.

 	7.2.0
 	
 Support for object has been added.

 	7.1.0
 	
 Support for iterable has been added.

 	7.1.0
 	
 Support for void has been added.

 	7.1.0
 	
 Support for nullable types has been added.

 Atomic Types Usage Notes

 Atomic types have straight forward behaviour with some minor caveats which
 are described in this section.

 Scalar types

 Warning

 Name aliases for scalar types (bool, int,
 float, string) are not supported.
 Instead, they are treated as class or interface names.
 For example, using boolean as a type declaration
 will require the value to be an instanceof the class or interface
 boolean, rather than of type bool:

<?php
 function test(boolean $param) {}
 test(true);
?>

 Output of the above example in PHP 8:

Warning: "boolean" will be interpreted as a class name. Did you mean "bool"? Write "\boolean" to suppress this warning in /in/9YrUX on line 2

Fatal error: Uncaught TypeError: test(): Argument #1 ($param) must be of type boolean, bool given, called in - on line 3 and defined in -:2
Stack trace:
#0 -(3): test(true)
#1 {main}
 thrown in - on line 2

 void

 Note:

 Returning by reference from a void function is deprecated as of PHP 8.1.0,
 because such a function is contradictory.
 Previously, it already emitted the following
 E_NOTICE when called:
 Only variable references should be returned by reference.

<?php
function &test(): void {}
?>

 Callable types

 This type cannot be used as a class property type declaration.

 Note:

 It is not possible to specify the signature of the function.

 Type declarations on pass-by-reference Parameters

 If a pass-by-reference parameter has a type declaration, the type of the
 variable is only checked on function entry, at the
 beginning of the call, but not when the function returns.
 This means that a function can change the type of variable reference.

 Example #1 Typed pass-by-reference Parameters

<?php
function array_baz(array &$param)
{
 $param = 1;
}
$var = [];
array_baz($var);
var_dump($var);
array_baz($var);
?>

 The above example will output
something similar to:

int(1)

Fatal error: Uncaught TypeError: array_baz(): Argument #1 ($param) must be of type array, int given, called in - on line 9 and defined in -:2
Stack trace:
#0 -(9): array_baz(1)
#1 {main}
 thrown in - on line 2

 Composite Types Usage Notes

 Composite type declarations are subject to a couple of restrictions and
 will perform a redundancy check at compile time to prevent simple bugs.

 Caution

 Prior to PHP 8.2.0, and the introduction of DNF types,
 it was not possible to combine intersection types with union types.

 Union types

 Warning

 It is not possible to combine the two value types false
 and true together in a union type.
 Use bool instead.

 Caution

 Prior to PHP 8.2.0, as false and null
 could not be used as standalone types, a union type comprised of only
 these types was not permitted. This comprises the following types:
 false, false|null,
 and ?false.

 Nullable type syntactic sugar

 A single base type declaration can be marked nullable by prefixing the
 type with a question mark (?).
 Thus ?T and T|null are identical.

 Note:

 This syntax is supported as of PHP 7.1.0, and predates generalized union
 types support.

 Note:

 It is also possible to achieve nullable arguments by making
 null the default value.
 This is not recommended as if the default value is changed in a child
 class a type compatibility violation will be raised as the
 null type will need to be added to the type declaration.

 Example #2 Old way to make arguments nullable

<?php
class C {}

function f(C $c = null) {
 var_dump($c);
}

f(new C);
f(null);
?>

 The above example will output:

object(C)#1 (0) {
}
NULL

 Duplicate and redundant types

 To catch simple bugs in composite type declarations, redundant types that
 can be detected without performing class loading will result in a
 compile-time error. This includes:

 	

 Each name-resolved type may only occur once. Types such as
 int|string|INT or
 Countable&Traversable&COUNTABLE
 result in an error.

 	

 Using mixed results in an error.

 	
 For union types:

 	

 If bool is used, false or true
 cannot be used additionally.

 	

 If object is used, class types cannot be used additionally.

 	

 If iterable is used, array
 and Traversable cannot be used additionally.

 	
 For intersection types:

 	

 Using a type which is not a class-type results in an error.

 	

 Using either self, parent, or
 static results in an error.

 	
 For DNF types:

 	

 If a more generic type is used, the more restrictive one is redundant.

 	

 Using two identical intersection types.

 Note:

 This does not guarantee that the type is “minimal”, because doing so would
 require loading all used class types.

 For example, if A and B are class
 aliases, then A|B remains a legal union type, even
 though it could be reduced to either A or
 B.
 Similarly, if class B extends A {}, then A|B
 is also a legal union type, even though it could be reduced to just
 A.

<?php
function foo(): int|INT {} // Disallowed
function foo(): bool|false {} // Disallowed
function foo(): int&Traversable {} // Disallowed
function foo(): self&Traversable {} // Disallowed

use A as B;
function foo(): A|B {} // Disallowed ("use" is part of name resolution)
function foo(): A&B {} // Disallowed ("use" is part of name resolution)

class_alias('X', 'Y');
function foo(): X|Y {} // Allowed (redundancy is only known at runtime)
function foo(): X&Y {} // Allowed (redundancy is only known at runtime)
?>

 Examples

 Example #3 Basic class type declaration

<?php
class C {}
class D extends C {}

// This doesn't extend C.
class E {}

function f(C $c) {
 echo get_class($c)."\n";
}

f(new C);
f(new D);
f(new E);
?>

 Output of the above example in PHP 8:

C
D

Fatal error: Uncaught TypeError: f(): Argument #1 ($c) must be of type C, E given, called in /in/gLonb on line 14 and defined in /in/gLonb:8
Stack trace:
#0 -(14): f(Object(E))
#1 {main}
 thrown in - on line 8

 Example #4 Basic interface type declaration

<?php
interface I { public function f(); }
class C implements I { public function f() {} }

// This doesn't implement I.
class E {}

function f(I $i) {
 echo get_class($i)."\n";
}

f(new C);
f(new E);
?>

 Output of the above example in PHP 8:

C

Fatal error: Uncaught TypeError: f(): Argument #1 ($i) must be of type I, E given, called in - on line 13 and defined in -:8
Stack trace:
#0 -(13): f(Object(E))
#1 {main}
 thrown in - on line 8

 Example #5 Basic return type declaration

<?php
function sum($a, $b): float {
 return $a + $b;
}

// Note that a float will be returned.
var_dump(sum(1, 2));
?>

 The above example will output:

float(3)

 Example #6 Returning an object

<?php
class C {}

function getC(): C {
 return new C;
}

var_dump(getC());
?>

 The above example will output:

object(C)#1 (0) {
}

 Example #7 Nullable argument type declaration

 <?php
class C {}

function f(?C $c) {
 var_dump($c);
}

f(new C);
f(null);
?>

 The above example will output:

object(C)#1 (0) {
}
NULL

 Example #8 Nullable return type declaration

 <?php
function get_item(): ?string {
 if (isset($_GET['item'])) {
 return $_GET['item'];
 } else {
 return null;
 }
}
?>

 Example #9 Class property type declaration

<?php
class User {
 public static string $foo = 'foo';

 public int $id;
 public string $username;

 public function __construct(int $id, string $username) {
 $this->id = $id;
 $this->username = $username;
 }
}
?>

 Strict typing

 By default, PHP will coerce values of the wrong type into the expected
 scalar type declaration if possible. For example, a function that is given
 an int for a parameter that expects a string
 will get a variable of type string.

 It is possible to enable strict mode on a per-file basis. In strict
 mode, only a value corresponding exactly to the type declaration will be
 accepted, otherwise a TypeError will be thrown.
 The only exception to this rule is that an int value will
 pass a float type declaration.

 Warning

 Function calls from within internal functions will not be affected by
 the strict_types declaration.

 To enable strict mode, the declare statement is used with the
 strict_types declaration:

 Note:

 Strict typing applies to function calls made from
 within the file with strict typing enabled, not to
 the functions declared within that file. If a file without strict
 typing enabled makes a call to a function that was defined in a file
 with strict typing, the caller's preference (coercive typing) will be
 respected, and the value will be coerced.

 Note:

 Strict typing is only defined for scalar type declarations.

 Example #10 Strict typing for arguments values

<?php
declare(strict_types=1);

function sum(int $a, int $b) {
 return $a + $b;
}

var_dump(sum(1, 2));
var_dump(sum(1.5, 2.5));
?>

 Output of the above example in PHP 8:

int(3)

Fatal error: Uncaught TypeError: sum(): Argument #1 ($a) must be of type int, float given, called in - on line 9 and defined in -:4
Stack trace:
#0 -(9): sum(1.5, 2.5)
#1 {main}
 thrown in - on line 4

 Example #11 Coercive typing for argument values

<?php
function sum(int $a, int $b) {
 return $a + $b;
}

var_dump(sum(1, 2));

// These will be coerced to integers: note the output below!
var_dump(sum(1.5, 2.5));
?>

 The above example will output:

int(3)
int(3)

 Example #12 Strict typing for return values

<?php
declare(strict_types=1);

function sum($a, $b): int {
 return $a + $b;
}

var_dump(sum(1, 2));
var_dump(sum(1, 2.5));
?>

 The above example will output:

int(3)

Fatal error: Uncaught TypeError: sum(): Return value must be of type int, float returned in -:5
Stack trace:
#0 -(9): sum(1, 2.5)
#1 {main}
 thrown in - on line 5

 Type Juggling

 PHP does not require explicit type definition in variable declaration.
 In this case, the type of a variable is determined by the value it stores.
 That is to say, if a string is assigned to variable
 $var, then $var is of type
 string. If afterwards an int value is assigned
 to $var, it will be of type int.

 PHP may attempt to convert the type of a value to another automatically
 in certain contexts. The different contexts which exist are:

 	
 Numeric

 	
 String

 	
 Logical

 	
 Integral and string

 	
 Comparative

 	
 Function

 Note:

 When a value needs to be interpreted as a different type, the value itself
 does not change types.

 To force a variable to be evaluated as a certain type, see the section on
 Type casting. To change the
 type of a variable, see the settype() function.

 Numeric contexts

 This is the context when using an
 arithmetical operator.

 In this context if either operand is a float (or not
 interpretable as an int), both operands are interpreted as
 floats, and the result will be a float.
 Otherwise, the operands will be interpreted as ints,
 and the result will also be an int.
 As of PHP 8.0.0, if one of the operands cannot be interpreted a
 TypeError is thrown.

 String contexts

 This is the context when using echo,
 print,
 string interpolation,
 or the string
 concatenation operator.

 In this context the value will be interpreted as string.
 If the value cannot be interpreted a TypeError is thrown.
 Prior to PHP 7.4.0, an E_RECOVERABLE_ERROR was raised.

 Logical contexts

 This is the context when using conditional statements, the
 ternary operator,
 or a logical operator.

 In this context the value will be interpreted as bool.

 Integral and string contexts

 This is the context when using
 bitwise operators.

 In this context if all operands are of type string the result
 will also be a string.
 Otherwise, the operands will be interpreted as ints,
 and the result will also be an int.
 As of PHP 8.0.0, if one of the operands cannot be interpreted a
 TypeError is thrown.

 Comparative contexts

 This is the context when using a
 comparison operator.

 The type conversions which occur in this context are explained in the
 Comparison with Various Types
 table.

 Function contexts

 This is the context when a value is passed to a typed parameter, property,
 or returned from a function which declares a return type.

 In this context the value must be a value of the type.
 Two exceptions exist, the first one is: if the value is of type
 int and the declared type is float, then the
 integer is converted to a floating point number.
 The second one is: if the declared type is a scalar

 type, the value is convertable to a scalar type,
 and the coercive typing mode is active
 (the default), the value may be converted to an accepted scalar value.
 See below for a description of this behaviour.

 Warning

 Internal functions
 automatically coerce null to scalar types,
 this behaviour is DEPRECATED as of PHP 8.1.0.

 Coercive typing with simple type declarations

 	

 bool type declaration: value is interpreted as bool.

 	

 int type declaration: value is interpreted as int
 if the conversion is well-defined. For example the string is
 numeric.

 	

 float type declaration: value is interpreted as float
 if the conversion is well-defined. For example the string is
 numeric.

 	

 string type declaration: value is interpreted as string.

 Coercive typing with union types

 When strict_types is not enabled, scalar type declarations
 are subject to limited implicit type coercions.
 If the exact type of the value is not part of the union, then the target type
 is chosen in the following order of preference:

 	

 int

 	

 float

 	

 string

 	

 bool

 If the type exists in the union and the value can be coerced to the
 type under PHP's existing type-checking semantics, then the type is chosen.
 Otherwise, the next type is tried.

 Caution

 As an exception, if the value is a string and both int and float are part
 of the union, the preferred type is determined by the existing
 numeric string
 semantics.
 For example, for "42" int is chosen,
 while for "42.0" float is chosen.

 Note:

 Types that are not part of the above preference list are not eligible
 targets for implicit coercion. In particular no implicit coercions to
 the null, false, and true
 types occur.

 Example #1 Example of types being coerced into a type part of the union

<?php
// int|string
42 --> 42 // exact type
"42" --> "42" // exact type
new ObjectWithToString --> "Result of __toString()"
 // object never compatible with int, fall back to string
42.0 --> 42 // float compatible with int
42.1 --> 42 // float compatible with int
1e100 --> "1.0E+100" // float too large for int type, fall back to string
INF --> "INF" // float too large for int type, fall back to string
true --> 1 // bool compatible with int
[] --> TypeError // array not compatible with int or string

// int|float|bool
"45" --> 45 // int numeric string
"45.0" --> 45.0 // float numeric string

"45X" --> true // not numeric string, fall back to bool
"" --> false // not numeric string, fall back to bool
"X" --> true // not numeric string, fall back to bool
[] --> TypeError // array not compatible with int, float or bool
?>

 Type Casting

 Type casting converts the value to a chosen type by writing the type within
 parentheses before the value to convert.

<?php
$foo = 10; // $foo is an integer
$bar = (bool) $foo; // $bar is a boolean
?>

 The casts allowed are:

 	(int) - cast to int

 	(bool) - cast to bool

 	(float) - cast to float

 	(string) - cast to string

 	(array) - cast to array

 	(object) - cast to object

 	(unset) - cast to NULL

 Note:

 (integer) is an alias of the (int) cast.
 (boolean) is an alias of the (bool) cast.
 (binary) is an alias of the (string) cast.
 (double) and (real) are aliases of
 the (float) cast.
 These casts do not use the canonical type name and are not recommended.

 Warning

 The (real) cast alias has been deprecated as of PHP 8.0.0.

 Warning

 The (unset) cast has been deprecated as of PHP 7.2.0.
 Note that the (unset) cast is the same as assigning the
 value NULL to the variable or call.
 The (unset) cast is removed as of PHP 8.0.0.

 Caution

 The (binary) cast and b prefix exists
 for forward support. Currently (binary) and
 (string) are identical, however this may change and
 should not be relied upon.

 Note:

 Whitespaces are ignored within the parentheses of a cast.
 Therefore, the following two casts are equivalent:

<?php
$foo = (int) $bar;
$foo = (int) $bar;
?>

 Casting literal strings and variables to binary
 strings:

<?php
$binary = (binary) $string;
$binary = b"binary string";
?>

 Note:

 Instead of casting a variable to a string, it is also possible
 to enclose the variable in double quotes.

<?php
$foo = 10; // $foo is an integer
$str = "$foo"; // $str is a string
$fst = (string) $foo; // $fst is also a string

// This prints out that "they are the same"
if ($fst === $str) {
 echo "they are the same";
}
?>

 It may not be obvious exactly what will happen when casting between certain
 types. For more information, see these sections:

 	Converting to boolean

 	Converting to integer

 	Converting to float

 	Converting to string

 	Converting to array

 	Converting to object

 	Converting to resource

 	Converting to NULL

 	The type comparison tables

 Note:

 Because PHP supports indexing into strings via offsets
 using the same syntax as array indexing, the following example
 holds true for all PHP versions:

<?php
$a = 'car'; // $a is a string
$a[0] = 'b'; // $a is still a string
echo $a; // bar
?>

 See the section titled String
 access by character for more information.

 Variables

Table of Contents
	Basics
	Predefined Variables
	Variable scope
	Variable variables
	Variables From External Sources

 Basics

 Variables in PHP are represented by a dollar sign followed by the
 name of the variable. The variable name is case-sensitive.

 Variable names follow the same rules as other labels in PHP. A
 valid variable name starts with a letter or underscore, followed
 by any number of letters, numbers, or underscores. As a regular
 expression, it would be expressed thus:
 ^[a-zA-Z_\x80-\xff][a-zA-Z0-9_\x80-\xff]*$

 Note:

 For our purposes here, a letter is a-z, A-Z, and the bytes
 from 128 through 255 (0x80-0xff).

 Note:

 $this is a special variable that can't be
 assigned.
 Prior to PHP 7.1.0, indirect assignment (e.g. by using
 variable variables)
 was possible.

 TipSee also the
Userland Naming Guide.

 For information on variable related functions, see the
 Variable Functions Reference.

<?php
$var = 'Bob';
$Var = 'Joe';
echo "$var, $Var"; // outputs "Bob, Joe"

$4site = 'not yet'; // invalid; starts with a number
$_4site = 'not yet'; // valid; starts with an underscore
$täyte = 'mansikka'; // valid; 'ä' is (Extended) ASCII 228.
?>

 By default, variables are always assigned by value. That is to say,
 when you assign an expression to a variable, the entire value of
 the original expression is copied into the destination
 variable. This means, for instance, that after assigning one
 variable's value to another, changing one of those variables will
 have no effect on the other. For more information on this kind of
 assignment, see the chapter on Expressions.

 PHP also offers another way to assign values to variables:
 assign by reference.
 This means that the new variable simply references (in other words,
 "becomes an alias for" or "points to") the original variable.
 Changes to the new variable affect the original, and vice versa.

 To assign by reference, simply prepend an ampersand (&) to the
 beginning of the variable which is being assigned (the source
 variable). For instance, the following code snippet outputs 'My
 name is Bob' twice:

<?php
$foo = 'Bob'; // Assign the value 'Bob' to $foo
$bar = &$foo; // Reference $foo via $bar.
$bar = "My name is $bar"; // Alter $bar...
echo $bar;
echo $foo; // $foo is altered too.
?>

 One important thing to note is that only named variables may be
 assigned by reference.

<?php
$foo = 25;
$bar = &$foo; // This is a valid assignment.
$bar = &(24 * 7); // Invalid; references an unnamed expression.

function test()
{
 return 25;
}

$bar = &test(); // Invalid.
?>

 It is not necessary to initialize variables in PHP however it is a very
 good practice. Uninitialized variables have a default value of their type depending on the context in which they are used
 - booleans default to false, integers and floats default to zero, strings (e.g. used in echo) are
 set as an empty string and arrays become to an empty array.

 Example #1 Default values of uninitialized variables

<?php
// Unset AND unreferenced (no use context) variable; outputs NULL
var_dump($unset_var);

// Boolean usage; outputs 'false' (See ternary operators for more on this syntax)
echo $unset_bool ? "true\n" : "false\n";

// String usage; outputs 'string(3) "abc"'
$unset_str .= 'abc';
var_dump($unset_str);

// Integer usage; outputs 'int(25)'
$unset_int += 25; // 0 + 25 => 25
var_dump($unset_int);

// Float usage; outputs 'float(1.25)'
$unset_float += 1.25;
var_dump($unset_float);

// Array usage; outputs array(1) { [3]=> string(3) "def" }
$unset_arr[3] = "def"; // array() + array(3 => "def") => array(3 => "def")
var_dump($unset_arr);

// Object usage; creates new stdClass object (see http://www.php.net/manual/en/reserved.classes.php)
// Outputs: object(stdClass)#1 (1) { ["foo"]=> string(3) "bar" }
$unset_obj->foo = 'bar';
var_dump($unset_obj);
?>

 Relying on the default value of an uninitialized variable is problematic
 in the case of including one file into another which uses the same
 variable name.
 E_WARNING (prior to PHP 8.0.0, E_NOTICE)
 level error is issued in case of
 working with uninitialized variables, however not in the case of appending
 elements to the uninitialized array. isset() language
 construct can be used to detect if a variable has been already initialized.

 Predefined Variables

 PHP provides a large number of predefined variables to any script
 which it runs. Many of these variables, however, cannot be fully
 documented as they are dependent upon which server is running, the
 version and setup of the server, and other factors. Some of these
 variables will not be available when PHP is run on the
 command line.
 Refer to the list of predefined variables
 for details.

 PHP also provides an additional set of predefined arrays
 containing variables from the web server (if applicable), the
 environment, and user input. These arrays are rather special
 in that they are automatically global - i.e., automatically
 available in every scope. For this reason, they are often known as
 "superglobals". (There is no mechanism in PHP for
 user-defined superglobals.) Refer to the
 list of superglobals
 for details.

 Note:
 Variable variables

 Superglobals cannot be used as
 variable variables
 inside functions or class methods.

 If certain variables in variables_order are not set, their
 appropriate PHP predefined arrays are also left empty.

 Variable scope

 The scope of a variable is the context within which it is defined.
 For the most part all PHP variables only have a single scope.
 This single scope spans included and
 required files as well. For example:

<?php
$a = 1;
include 'b.inc';
?>

 Here the $a variable will be available within
 the included b.inc script. However, within
 user-defined functions a local function scope is introduced. Any
 variable used inside a function is by default limited to the local
 function scope. For example:

<?php
$a = 1; /* global scope */

function test()
{
 echo $a; /* reference to local scope variable */
}

test();
?>

 This script will generate an undefined variable E_WARNING
 (or a E_NOTICE prior to PHP 8.0.0)
 diagnostic. However, if the
 display_errors INI setting is set to hide
 such diagnostics then nothing at all will be outputted.
 This is because the echo statement
 refers to a local version of the $a variable,
 and it has not been assigned a value within this scope. You may
 notice that this is a little bit different from the C language in
 that global variables in C are automatically available to
 functions unless specifically overridden by a local definition.
 This can cause some problems in that people may inadvertently
 change a global variable. In PHP global variables must be
 declared global inside a function if they are going to be used in
 that function.

 The global keyword

 First, an example use of global:

 Example #1 Using global

<?php
$a = 1;
$b = 2;

function Sum()
{
 global $a, $b;

 $b = $a + $b;
}

Sum();
echo $b;
?>

 The above script will output 3. By declaring
 $a and $b global within the
 function, all references to either variable will refer to the
 global version. There is no limit to the number of global
 variables that can be manipulated by a function.

 A second way to access variables from the global scope is to use
 the special PHP-defined $GLOBALS array. The
 previous example can be rewritten as:

 Example #2 Using $GLOBALS instead of global

<?php
$a = 1;
$b = 2;

function Sum()
{
 $GLOBALS['b'] = $GLOBALS['a'] + $GLOBALS['b'];
}

Sum();
echo $b;
?>

 The $GLOBALS array is an associative array with
 the name of the global variable being the key and the contents of
 that variable being the value of the array element.
 Notice how $GLOBALS exists in any scope, this
 is because $GLOBALS is a superglobal.
 Here's an example demonstrating the power of superglobals:

 Example #3 Example demonstrating superglobals and scope

<?php
function test_superglobal()
{
 echo $_POST['name'];
}
?>

 Note:

 Using global keyword outside a function is not an
 error. It can be used if the file is included from inside a function.

 Using static variables

 Another important feature of variable scoping is the
 static variable. A static variable exists
 only in a local function scope, but it does not lose its value
 when program execution leaves this scope. Consider the following
 example:

 Example #4 Example demonstrating need for static variables

<?php
function test()
{
 $a = 0;
 echo $a;
 $a++;
}
?>

 This function is quite useless since every time it is called it
 sets $a to 0 and prints
 0. The $a++ which increments the
 variable serves no purpose since as soon as the function exits the
 $a variable disappears. To make a useful
 counting function which will not lose track of the current count,
 the $a variable is declared static:

 Example #5 Example use of static variables

<?php
function test()
{
 static $a = 0;
 echo $a;
 $a++;
}
?>

 Now, $a is initialized only in first call of function
 and every time the test() function is called it will print the
 value of $a and increment it.

 Static variables also provide one way to deal with recursive
 functions. A recursive function is one which calls itself. Care
 must be taken when writing a recursive function because it is
 possible to make it recurse indefinitely. You must make sure you
 have an adequate way of terminating the recursion. The following
 simple function recursively counts to 10, using the static
 variable $count to know when to stop:

 Example #6 Static variables with recursive functions

<?php
function test()
{
 static $count = 0;

 $count++;
 echo $count;
 if ($count < 10) {
 test();
 }
 $count--;
}
?>

 Static variables can be assigned values which are the
 result of constant expressions, but dynamic expressions, such as function
 calls, will cause a parse error.

 Example #7 Declaring static variables

<?php
function foo(){
 static $int = 0; // correct
 static $int = 1+2; // correct
 static $int = sqrt(121); // wrong (as it is a function)

 $int++;
 echo $int;
}
?>

 As of PHP 8.1.0, when a method using static variables is inherited (but not overridden),
 the inherited method will now share static variables with the parent method.
 This means that static variables in methods now behave the same way as static properties.

 Example #8 Usage of static Variables in Inherited Methods

<?php
class Foo {
 public static function counter() {
 static $counter = 0;
 $counter++;
 return $counter;
 }
}
class Bar extends Foo {}
var_dump(Foo::counter()); // int(1)
var_dump(Foo::counter()); // int(2)
var_dump(Bar::counter()); // int(3), prior to PHP 8.1.0 int(1)
var_dump(Bar::counter()); // int(4), prior to PHP 8.1.0 int(2)
?>

 Note:

 Static declarations are resolved in compile-time.

 References with global and static variables

 PHP implements the
 static and
 global modifier
 for variables in terms of
 references. For example, a true global variable
 imported inside a function scope with the global
 statement actually creates a reference to the global variable. This can
 lead to unexpected behaviour which the following example addresses:

<?php
function test_global_ref() {
 global $obj;
 $new = new stdClass;
 $obj = &$new;
}

function test_global_noref() {
 global $obj;
 $new = new stdClass;
 $obj = $new;
}

test_global_ref();
var_dump($obj);
test_global_noref();
var_dump($obj);
?>

 The above example will output:

NULL
object(stdClass)#1 (0) {
}

 A similar behaviour applies to the static statement.
 References are not stored statically:

<?php
function &get_instance_ref() {
 static $obj;

 echo 'Static object: ';
 var_dump($obj);
 if (!isset($obj)) {
 $new = new stdClass;
 // Assign a reference to the static variable
 $obj = &$new;
 }
 if (!isset($obj->property)) {
 $obj->property = 1;
 } else {
 $obj->property++;
 }
 return $obj;
}

function &get_instance_noref() {
 static $obj;

 echo 'Static object: ';
 var_dump($obj);
 if (!isset($obj)) {
 $new = new stdClass;
 // Assign the object to the static variable
 $obj = $new;
 }
 if (!isset($obj->property)) {
 $obj->property = 1;
 } else {
 $obj->property++;
 }
 return $obj;
}

$obj1 = get_instance_ref();
$still_obj1 = get_instance_ref();
echo "\n";
$obj2 = get_instance_noref();
$still_obj2 = get_instance_noref();
?>

 The above example will output:

Static object: NULL
Static object: NULL

Static object: NULL
Static object: object(stdClass)#3 (1) {
 ["property"]=>
 int(1)
}

 This example demonstrates that when assigning a reference to a static
 variable, it's not remembered when you call the
 &get_instance_ref() function a second time.

 Variable variables

 Sometimes it is convenient to be able to have variable variable
 names. That is, a variable name which can be set and used
 dynamically. A normal variable is set with a statement such as:

<?php
$a = 'hello';
?>

 A variable variable takes the value of a variable and treats that
 as the name of a variable. In the above example,
 hello, can be used as the name of a variable
 by using two dollar signs. i.e.

<?php
$$a = 'world';
?>

 At this point two variables have been defined and stored in the
 PHP symbol tree: $a with contents "hello" and
 $hello with contents "world". Therefore, this
 statement:

<?php
echo "$a {$$a}";
?>

 produces the exact same output as:

<?php
echo "$a $hello";
?>

 i.e. they both produce: hello world.

 In order to use variable variables with arrays, you have to
 resolve an ambiguity problem. That is, if you write
 $$a[1] then the parser needs to know if you
 meant to use $a[1] as a variable, or if you
 wanted $$a as the variable and then the [1]
 index from that variable. The syntax for resolving this ambiguity
 is: ${$a[1]} for the first case and
 ${$a}[1] for the second.

 Class properties may also be accessed using variable property names. The
 variable property name will be resolved within the scope from which the
 call is made. For instance, if you have an expression such as
 $foo->$bar, then the local scope will be examined for
 $bar and its value will be used as the name of the
 property of $foo. This is also true if
 $bar is an array access.

 Curly braces may also be used, to clearly delimit the property
 name. They are most useful when accessing values within a property that
 contains an array, when the property name is made of multiple parts,
 or when the property name contains characters that are not
 otherwise valid (e.g. from json_decode()
 or SimpleXML).

 Example #1 Variable property example

<?php
class foo {
 var $bar = 'I am bar.';
 var $arr = array('I am A.', 'I am B.', 'I am C.');
 var $r = 'I am r.';
}

$foo = new foo();
$bar = 'bar';
$baz = array('foo', 'bar', 'baz', 'quux');
echo $foo->$bar . "\n";
echo $foo->{$baz[1]} . "\n";

$start = 'b';
$end = 'ar';
echo $foo->{$start . $end} . "\n";

$arr = 'arr';
echo $foo->{$arr[1]} . "\n";

?>

 The above example will output:

I am bar.

I am bar.

I am bar.

I am r.

 Warning

 Please note that variable variables cannot be used with PHP's
 Superglobal arrays
 within functions or class methods. The variable $this
 is also a special variable that cannot be referenced dynamically.

 Variables From External Sources

 HTML Forms (GET and POST)

 When a form is submitted to a PHP script, the information from
 that form is automatically made available to the script. There
 are few ways to access this information, for example:

 Example #1 A simple HTML form

<form action="foo.php" method="post">
 Name: <input type="text" name="username" />

 Email: <input type="text" name="email" />

 <input type="submit" name="submit" value="Submit me!" />
</form>

 There are only two ways to access data from your HTML forms.
 Currently available methods are listed below:

 Example #2 Accessing data from a simple POST HTML form

<?php
echo $_POST['username'];
echo $_REQUEST['username'];
?>

 Using a GET form is similar except you'll use the appropriate
 GET predefined variable instead. GET also applies to the
 QUERY_STRING (the information after the '?' in a URL). So,
 for example, http://www.example.com/test.php?id=3
 contains GET data which is accessible with $_GET['id'].
 See also $_REQUEST.

 Note:

 Dots and spaces in variable names are converted to underscores. For
 example <input name="a.b" /> becomes
 $_REQUEST["a_b"].

 PHP also understands arrays in the context of form variables
 (see the related faq). You may,
 for example, group related variables together, or use this
 feature to retrieve values from a multiple select input. For
 example, let's post a form to itself and upon submission display
 the data:

 Example #3 More complex form variables

<?php
if ($_POST) {
 echo '<pre>';
 echo htmlspecialchars(print_r($_POST, true));
 echo '</pre>';
}
?>
<form action="" method="post">
 Name: <input type="text" name="personal[name]" />

 Email: <input type="text" name="personal[email]" />

 Beer:

 <select multiple name="beer[]">
 <option value="warthog">Warthog</option>
 <option value="guinness">Guinness</option>
 <option value="stuttgarter">Stuttgarter Schwabenbräu</option>
 </select>

 <input type="submit" value="submit me!" />
</form>

 Note:

 If an external variable name begins with a valid array syntax, trailing characters
 are silently ignored. For example, <input name="foo[bar]baz">
 becomes $_REQUEST['foo']['bar'].

 IMAGE SUBMIT variable names

 When submitting a form, it is possible to use an image instead
 of the standard submit button with a tag like:

<input type="image" src="image.gif" name="sub" />

 When the user clicks somewhere on the image, the accompanying
 form will be transmitted to the server with two additional
 variables, sub_x and sub_y.
 These contain the coordinates of the
 user click within the image. The experienced may note that the
 actual variable names sent by the browser contains a period
 rather than an underscore, but PHP converts the period to an
 underscore automatically.

 HTTP Cookies

 PHP transparently supports HTTP cookies as defined by RFC 6265. Cookies are a
 mechanism for storing data in the remote browser and thus
 tracking or identifying return users. You can set cookies using
 the setcookie() function. Cookies are part of
 the HTTP header, so the SetCookie function must be called before
 any output is sent to the browser. This is the same restriction
 as for the header() function. Cookie data
 is then available in the appropriate cookie data arrays, such
 as $_COOKIE as well as in $_REQUEST.
 See the setcookie() manual page for more details and
 examples.

 Note:

 As of PHP 7.2.34, 7.3.23 and 7.4.11, respectively, the names
 of incoming cookies are no longer url-decoded for security reasons.

 If you wish to assign multiple values to a single cookie variable, you
 may assign it as an array. For example:

<?php
 setcookie("MyCookie[foo]", 'Testing 1', time()+3600);
 setcookie("MyCookie[bar]", 'Testing 2', time()+3600);
?>

 That will create two separate cookies although MyCookie will now
 be a single array in your script. If you want to set just one cookie
 with multiple values, consider using serialize() or
 explode() on the value first.

 Note that a cookie will replace a previous cookie by the same
 name in your browser unless the path or domain is different. So,
 for a shopping cart application you may want to keep a counter
 and pass this along. i.e.

 Example #4 A setcookie() example

<?php
if (isset($_COOKIE['count'])) {
 $count = $_COOKIE['count'] + 1;
} else {
 $count = 1;
}
setcookie('count', $count, time()+3600);
setcookie("Cart[$count]", $item, time()+3600);
?>

 Dots in incoming variable names

 Typically, PHP does not alter the names of variables when they
 are passed into a script. However, it should be noted that the
 dot (period, full stop) is not a valid character in a PHP
 variable name. For the reason, look at it:

<?php
$varname.ext; /* invalid variable name */
?>

 Now, what the parser sees is a variable named
 $varname, followed by the string concatenation
 operator, followed by the barestring (i.e. unquoted string which
 doesn't match any known key or reserved words) 'ext'. Obviously,
 this doesn't have the intended result.

 For this reason, it is important to note that PHP will
 automatically replace any dots in incoming variable names with
 underscores.

 Determining variable types

 Because PHP determines the types of variables and converts them
 (generally) as needed, it is not always obvious what type a given
 variable is at any one time. PHP includes several functions
 which find out what type a variable is, such as:
 gettype(), is_array(),
 is_float(), is_int(),
 is_object(), and
 is_string(). See also the chapter on
 Types.

 HTTP being a text protocol, most, if not all, content that comes in
 Superglobal arrays,
 like $_POST and $_GET will remain
 as strings. PHP will not try to convert values to a specific type.
 In the example below, $_GET["var1"] will contain the
 string "null" and $_GET["var2"], the string "123".

/index.php?var1=null&var2=123

 Changelog

 	Version
 	Description

 	7.2.34, 7.3.23, 7.4.11
 	
 The names of incoming cookies are no longer url-decoded
 for security reasons.

 Constants

Table of Contents
	Syntax
	Predefined constants
	Magic constants

 A constant is an identifier (name) for a simple value. As the name
 suggests, that value cannot change during the execution of the
 script (except for
 magic constants, which aren't actually constants).
 Constants are case-sensitive. By convention, constant
 identifiers are always uppercase.

 Note:

 Prior to PHP 8.0.0, constants defined using the define()
 function may be case-insensitive.

 The name of a constant follows the same rules as any label in PHP. A
 valid constant name starts with a letter or underscore, followed
 by any number of letters, numbers, or underscores. As a regular
 expression, it would be expressed thusly:
 ^[a-zA-Z_\x80-\xff][a-zA-Z0-9_\x80-\xff]*$

 It is possible to define() constants with reserved or even
 invalid names, whose value can only be retrieved with the
 constant() function. However, doing so is not recommended.

 TipSee also the
Userland Naming Guide.

 Example #1 Valid and invalid constant names

<?php

// Valid constant names
define("FOO", "something");
define("FOO2", "something else");
define("FOO_BAR", "something more");

// Invalid constant names
define("2FOO", "something");

// This is valid, but should be avoided:
// PHP may one day provide a magical constant
// that will break your script
define("__FOO__", "something");

?>

 Note:

 For our purposes here, a letter is a-z, A-Z, and the ASCII
 characters from 128 through 255 (0x80-0xff).

 Like superglobals, the scope of a constant is global.
 Constants can be accessed from anywhere in a script without regard to scope.
 For more information on scope, read the manual section on
 variable scope.

 Note:

 As of PHP 7.1.0, class constant may declare a visibility of protected
 or private, making them only available in the hierarchical scope of the
 class in which it is defined.

 Syntax

 Constants can be defined using the const keyword,
 or by using the define()-function.
 While define() allows a constant to be
 defined to an arbitrary expression, the const keyword has
 restrictions as outlined in the next paragraph.
 Once a constant is defined, it can never be
 changed or undefined.

 When using the const keyword,
 only scalar (bool, int,
 float and string) expressions and constant
 arrays containing only scalar expressions are accepted.
 It is possible to define constants as a resource,
 but it should be avoided, as it can cause unexpected results.

 The value of a constant is accessed simply by specifying its name.
 Unlike variables, a constant is not prepended
 with a $.
 It is also possible to use the constant() function to
 read a constant's value if the constant's name is obtained dynamically.
 Use get_defined_constants() to get a list of
 all defined constants.

 Note:

 Constants and (global) variables are in a different namespace.
 This implies that for example true and
 $TRUE are generally different.

 If an undefined constant is used an Error is thrown.
 Prior to PHP 8.0.0, undefined constants would be interpreted as a bare
 word string, i.e. (CONSTANT vs "CONSTANT").
 This fallback is deprecated as of PHP 7.2.0, and an error of level
 E_WARNING is issued when it happens.
 Prior to PHP 7.2.0, an error of level
 E_NOTICE has been issued instead.
 See also the manual entry on why
 $foo[bar] is
 wrong (unless bar is a constant).
 This does not apply to (fully) qualified constants,
 which will always raise a Error if undefined.

 Note:

 To check if a constant is set, use the defined() function.

 These are the differences between constants and variables:

 	

 Constants do not have a dollar sign ($)
 before them;

 	

 Constants may be defined and accessed anywhere without regard
 to variable scoping rules;

 	

 Constants may not be redefined or undefined once they have been
 set; and

 	

 Constants may only evaluate to scalar values or arrays.

 Example #1 Defining Constants

<?php
define("CONSTANT", "Hello world.");
echo CONSTANT; // outputs "Hello world."
echo Constant; // Emits an Error: Undefined constant "Constant"
 // Prior to PHP 8.0.0, outputs "Constant" and issues a warning.
?>

 Example #2 Defining Constants using the const keyword

<?php
// Simple scalar value
const CONSTANT = 'Hello World';

echo CONSTANT;

// Scalar expression
const ANOTHER_CONST = CONSTANT.'; Goodbye World';
echo ANOTHER_CONST;

const ANIMALS = array('dog', 'cat', 'bird');
echo ANIMALS[1]; // outputs "cat"

// Constant arrays
define('ANIMALS', array(
 'dog',
 'cat',
 'bird'
));
echo ANIMALS[1]; // outputs "cat"
?>

 Note:

 As opposed to defining constants using define(),
 constants defined using the const keyword must be
 declared at the top-level scope because they are defined at compile-time.
 This means that they cannot be declared inside functions, loops,
 if statements or
 try/catch blocks.

 See Also

 	Class Constants

 Predefined constants

 PHP provides a large number of predefined constants to any script
 which it runs. Many of these constants, however, are created by
 various extensions, and will only be present when those extensions
 are available, either via dynamic loading or because they have
 been compiled in.

 Magic constants

 There are nine magical constants that change depending on
 where they are used. For example, the value of
 __LINE__ depends on the line that it's
 used on in your script. All these "magical" constants are resolved
 at compile time, unlike regular constants, which are resolved at runtime.
 These special constants are case-insensitive and are as follows:

 PHP's magic constants

 	Name
 	Description

 	__LINE__
 	
 The current line number of the file.

 	__FILE__
 	
 The full path and filename of the file with symlinks resolved. If used inside an include,
 the name of the included file is returned.

 	__DIR__
 	
 The directory of the file. If used inside an include,
 the directory of the included file is returned. This is equivalent
 to dirname(__FILE__). This directory name
 does not have a trailing slash unless it is the root directory.

 	__FUNCTION__
 	
 The function name, or {closure} for anonymous functions.

 	__CLASS__
 	
 The class name. The class name includes the namespace
 it was declared in (e.g. Foo\Bar).
 When used
 in a trait method, __CLASS__ is the name of the class the trait
 is used in.

 	__TRAIT__
 	
 The trait name. The trait name includes the namespace
 it was declared in (e.g. Foo\Bar).

 	__METHOD__
 	
 The class method name.

 	__NAMESPACE__
 	
 The name of the current namespace.

 	ClassName::class
 	
 The fully qualified class name.

 See Also

 	::class

 	get_class()

 	get_object_vars()

 	file_exists()

 	function_exists()

 Expressions

 Expressions are the most important building blocks of PHP. In PHP,
 almost anything you write is an expression. The simplest yet
 most accurate way to define an expression is "anything that has a
 value".

 The most basic forms of expressions are constants and variables.
 When you type $a = 5, you're assigning 5 into
 $a. 5, obviously,
 has the value 5, or in other words 5 is an expression with the
 value of 5 (in this case, 5 is an integer constant).

 After this assignment, you'd expect $a's value to be 5 as
 well, so if you wrote $b = $a, you'd expect it to behave just as
 if you wrote $b = 5. In other words, $a is an expression with the
 value of 5 as well. If everything works right, this is exactly
 what will happen.

 Slightly more complex examples for expressions are functions. For
 instance, consider the following function:

<?php
function foo ()
{
 return 5;
}
?>

 Assuming you're familiar with the concept of functions (if you're
 not, take a look at the chapter about functions), you'd assume
 that typing $c = foo() is essentially just like
 writing $c = 5, and you're right. Functions
 are expressions with the value of their return value. Since foo()
 returns 5, the value of the expression 'foo()' is 5. Usually
 functions don't just return a static value but compute something.

 Of course, values in PHP don't have to be integers, and very often
 they aren't. PHP supports four scalar value types: int
 values, floating point values (float), string
 values and bool values (scalar values are values that you
 can't 'break' into smaller pieces, unlike arrays, for instance). PHP also
 supports two composite (non-scalar) types: arrays and objects. Each of
 these value types can be assigned into variables or returned from functions.

 PHP takes expressions much further, in the same way many other languages
 do. PHP is an expression-oriented language, in the
 sense that almost everything is an expression. Consider the
 example we've already dealt with, $a = 5. It's easy to see that
 there are two values involved here, the value of the integer
 constant 5, and the value of $a which is being updated to 5 as
 well. But the truth is that there's one additional value involved
 here, and that's the value of the assignment itself. The
 assignment itself evaluates to the assigned value, in this case 5.
 In practice, it means that $a = 5, regardless of what it does,
 is an expression with the value 5. Thus, writing something like
 $b = ($a = 5) is like writing
 $a = 5; $b = 5; (a semicolon
 marks the end of a statement). Since assignments are parsed in a
 right to left order, you can also write $b = $a = 5.

 Another good example of expression orientation is pre- and
 post-increment and decrement. Users of PHP and many other
 languages may be familiar with the notation of variable++ and
 variable--. These are
 increment and decrement operators. In PHP, like in C, there
 are two types of increment - pre-increment and post-increment.
 Both pre-increment and post-increment essentially increment the
 variable, and the effect on the variable is identical. The
 difference is with the value of the increment expression.
 Pre-increment, which is written ++$variable, evaluates to the
 incremented value (PHP increments the variable before reading its
 value, thus the name 'pre-increment'). Post-increment, which is
 written $variable++ evaluates to the original value of
 $variable, before it was incremented (PHP increments the variable
 after reading its value, thus the name 'post-increment').

 A very common type of expressions are comparison
 expressions. These expressions evaluate to either false or true. PHP
 supports > (bigger than), >= (bigger than or equal to), == (equal),
 != (not equal), < (smaller than) and <= (smaller than or equal to).
 The language also supports a set of strict equivalence operators: ===
 (equal to and same type) and !== (not equal to or not same type).
 These expressions are most commonly used inside conditional execution,
 such as if statements.

 The last example of expressions we'll deal with here is combined
 operator-assignment expressions. You already know that if you
 want to increment $a by 1, you can simply write
 $a++ or ++$a.
 But what if you want to add more than one to it, for instance 3?
 You could write $a++ multiple times, but this
 is obviously not a very efficient or comfortable way. A much more
 common practice is to write $a =
 $a + 3. $a + 3 evaluates
 to the value of $a plus 3, and is assigned back
 into $a, which results in incrementing $a
 by 3. In PHP, as in several other languages like C, you can write this
 in a shorter way, which with time would become clearer and quicker to
 understand as well. Adding 3 to the current value of $a
 can be written $a += 3. This means exactly
 "take the value of $a, add 3 to it, and assign it
 back into $a". In addition to being shorter and
 clearer, this also results in faster execution. The value of
 $a += 3, like the value of a regular assignment, is
 the assigned value. Notice that it is NOT 3, but the combined value
 of $a plus 3 (this is the value that's
 assigned into $a). Any two-place operator can be used
 in this operator-assignment mode, for example $a -= 5
 (subtract 5 from the value of $a), $b *= 7
 (multiply the value of $b by 7), etc.

 There is one more expression that may seem odd if you haven't seen
 it in other languages, the ternary conditional operator:

<?php
$first ? $second : $third
?>

 If the value of the first subexpression is true (non-zero), then
 the second subexpression is evaluated, and that is the result of
 the conditional expression. Otherwise, the third subexpression is
 evaluated, and that is the value.

 The following example should help you understand pre- and
 post-increment and expressions in general a bit better:

<?php
function double($i)
{
 return $i*2;
}
$b = $a = 5; /* assign the value five into the variable $a and $b */
$c = $a++; /* post-increment, assign original value of $a
 (5) to $c */
$e = $d = ++$b; /* pre-increment, assign the incremented value of
 $b (6) to $d and $e */

/* at this point, both $d and $e are equal to 6 */

$f = double($d++); /* assign twice the value of $d before
 the increment, 2*6 = 12 to $f */
$g = double(++$e); /* assign twice the value of $e after
 the increment, 2*7 = 14 to $g */
$h = $g += 10; /* first, $g is incremented by 10 and ends with the
 value of 24. the value of the assignment (24) is
 then assigned into $h, and $h ends with the value
 of 24 as well. */
?>

 Some expressions can be considered as statements. In
 this case, a statement has the form of 'expr ;' that is, an
 expression followed by a semicolon. In $b = $a = 5;,
 $a = 5 is a valid expression, but it's not a statement
 by itself. $b = $a = 5;, however, is a valid statement.

 One last thing worth mentioning is the truth value of expressions.
 In many events, mainly in conditional execution and loops, you're
 not interested in the specific value of the expression, but only
 care about whether it means true or false.

 The constants true and false (case-insensitive) are the two
 possible boolean values. When necessary, an expression is
 automatically converted to boolean. See the
 section about
 type-casting for details about how.

 PHP provides a full and powerful implementation of expressions, and
 documenting it entirely goes beyond the scope of this manual. The
 above examples should give you a good idea about what expressions
 are and how you can construct useful expressions. Throughout the
 rest of this manual we'll write expr
 to indicate any valid PHP expression.

 Operators

Table of Contents
	Operator Precedence
	Arithmetic
	Increment and Decrement
	Assignment
	Bitwise
	Comparison
	Error Control
	Execution
	Logic
	String
	Array
	Type

 An operator is something that takes one or more values (or
 expressions, in programming jargon) and yields another value (so that the
 construction itself becomes an expression).

 Operators can be grouped according to the number of values they take. Unary
 operators take only one value, for example ! (the
 logical not operator) or
 ++ (the
 increment operator).
 Binary operators take two values, such as the familiar
 arithmetical operators
 + (plus) and - (minus), and the
 majority of PHP operators fall into this category. Finally, there is a
 single ternary
 operator, ? :, which takes three values; this is
 usually referred to simply as "the ternary operator" (although it could
 perhaps more properly be called the conditional operator).

 A full list of PHP operators follows in the section
 Operator Precedence.
 The section also explains operator precedence and associativity, which govern
 exactly how expressions containing several different operators are
 evaluated.

 Operator Precedence

 The precedence of an operator specifies how "tightly" it binds two
 expressions together. For example, in the expression 1 +
 5 * 3, the answer is 16 and not
 18 because the multiplication ("*") operator
 has a higher precedence than the addition ("+") operator.
 Parentheses may be used to force precedence, if necessary. For
 instance: (1 + 5) * 3 evaluates to
 18.

 When operators have equal precedence their associativity decides
 how the operators are grouped. For example "-" is left-associative, so
 1 - 2 - 3 is grouped as (1 - 2) - 3
 and evaluates to -4. "=" on the other hand is
 right-associative, so $a = $b = $c is grouped as
 $a = ($b = $c).

 Operators of equal precedence that are non-associative cannot be used
 next to each other, for example 1 < 2 > 1 is
 illegal in PHP. The expression 1 <= 1 == 1 on the
 other hand is legal, because the == operator has a lower
 precedence than the <= operator.

 Associativity is only meaningful for binary (and ternary) operators.
 Unary operators are either prefix or postfix so this notion is not applicable.
 For example !!$a can only be grouped as !(!$a).

 Use of parentheses, even when not strictly necessary, can often increase
 readability of the code by making grouping explicit rather than relying
 on the implicit operator precedence and associativity.

 The following table lists the operators in order of precedence, with
 the highest-precedence ones at the top. Operators on the same line
 have equal precedence, in which case associativity decides grouping.

 Operator Precedence

 	Associativity
 	Operators
 	Additional Information

 	(n/a)
 	
 clone
 new

 	clone and new

 	right
 	**
 	arithmetic

 	(n/a)
 	
 +
 -
 ++
 --
 ~
 (int)
 (float)
 (string)
 (array)
 (object)
 (bool)
 @

 	
 arithmetic (unary + and -),
 increment/decrement,
 bitwise,
 type casting and
 error control

 	left
 	instanceof
 	
 type

 	(n/a)
 	!
 	
 logical

 	left
 	
 *
 /
 %

 	
 arithmetic

 	left
 	
 +
 -
 .

 	
 arithmetic (binary + and -),
 array and
 string (. prior to PHP 8.0.0)

 	left
 	
 <<
 >>

 	
 bitwise

 	left
 	.
 	
 string (as of PHP 8.0.0)

 	non-associative
 	
 <
 <=
 >
 >=

 	
 comparison

 	non-associative
 	
 ==
 !=
 ===
 !==
 <>
 <=>

 	
 comparison

 	left
 	&
 	
 bitwise and
 references

 	left
 	^
 	
 bitwise

 	left
 	|
 	
 bitwise

 	left
 	&&
 	
 logical

 	left
 	||
 	
 logical

 	right
 	??
 	
 null coalescing

 	non-associative
 	? :
 	
 ternary
 (left-associative prior to PHP 8.0.0)

 	right
 	
 =
 +=
 -=
 *=
 **=
 /=
 .=
 %=
 &=
 |=
 ^=
 <<=
 >>=
 ??=

 	
 assignment

 	(n/a)
 	yield from
 	
 yield from

 	(n/a)
 	yield
 	
 yield

 	(n/a)
 	print
 	print

 	left
 	and
 	
 logical

 	left
 	xor
 	
 logical

 	left
 	or
 	
 logical

 Example #1 Associativity

<?php
$a = 3 * 3 % 5; // (3 * 3) % 5 = 4
// ternary operator associativity differs from C/C++
$a = true ? 0 : true ? 1 : 2; // (true ? 0 : true) ? 1 : 2 = 2 (prior to PHP 8.0.0)

$a = 1;
$b = 2;
$a = $b += 3; // $a = ($b += 3) -> $a = 5, $b = 5
?>

 Operator precedence and associativity only determine how expressions
 are grouped, they do not specify an order of evaluation. PHP does not
 (in the general case) specify in which order an expression is evaluated
 and code that assumes a specific order of evaluation should be avoided,
 because the behavior can change between versions of PHP or depending on
 the surrounding code.

 Example #2 Undefined order of evaluation

<?php
$a = 1;
echo $a + $a++; // may print either 2 or 3

$i = 1;
$array[$i] = $i++; // may set either index 1 or 2
?>

 Example #3 +, - and . have the same precedence (prior to PHP 8.0.0)

<?php
$x = 4;
// this line might result in unexpected output:
echo "x minus one equals " . $x-1 . ", or so I hope\n";
// because it is evaluated like this line (prior to PHP 8.0.0):
echo (("x minus one equals " . $x) - 1) . ", or so I hope\n";
// the desired precedence can be enforced by using parentheses:
echo "x minus one equals " . ($x-1) . ", or so I hope\n";
?>

 The above example will output:

-1, or so I hope
-1, or so I hope
x minus one equals 3, or so I hope

 Note:

 Although = has a lower precedence than
 most other operators, PHP will still allow expressions
 similar to the following: if (!$a = foo()),
 in which case the return value of foo() is
 put into $a.

 Changelog

 	Version
 	Description

 	8.0.0
 	
 String concatenation (.) now has a lower precedence than
 arithmetic addition/subtraction (+ and -) and
 bitwise shift left/right (<< and >>);
 previously it had the same precedence as + and -
 and a higher precedence than << and >>.

 	8.0.0
 	
 The ternary operator (? :) is non-associative now;
 previously it was left-associative.

 	7.4.0
 	
 Relying on the precedence of string concatenation (.) relative to
 arithmetic addition/subtraction (+ or -) or
 bitwise shift left/right (<< or >>),
 i.e. using them together in an unparenthesized expression, is deprecated.

 	7.4.0
 	
 Relying on left-associativity of the ternary operator (? :),
 i.e. nesting multiple unparenthesized ternary operators, is deprecated.

 Arithmetic Operators

 Remember basic arithmetic from school? These work just
 like those.

 Arithmetic Operators

 	Example
 	Name
 	Result

 	+$a
 	Identity
 	
 Conversion of $a to int or
 float as appropriate.

 	-$a
 	Negation
 	Opposite of $a.

 	$a + $b
 	Addition
 	Sum of $a and $b.

 	$a - $b
 	Subtraction
 	Difference of $a and $b.

 	$a * $b
 	Multiplication
 	Product of $a and $b.

 	$a / $b
 	Division
 	Quotient of $a and $b.

 	$a % $b
 	Modulo
 	Remainder of $a divided by $b.

 	$a ** $b
 	Exponentiation
 	Result of raising $a to the $b'th power.

 The division operator ("/") returns a float value unless the two operands
 are integers (or strings that get converted to integers) and the numbers
 are evenly divisible, in which case an integer value will be returned. For
 integer division, see intdiv().

 Operands of modulo are converted to int
 before processing. For floating-point modulo, see
 fmod().

 The result of the modulo operator % has the same sign
 as the dividend — that is, the result of $a % $b
 will have the same sign as $a. For example:

<?php

echo (5 % 3)."\n"; // prints 2
echo (5 % -3)."\n"; // prints 2
echo (-5 % 3)."\n"; // prints -2
echo (-5 % -3)."\n"; // prints -2

?>

 See Also

 	Math functions

 Incrementing/Decrementing Operators

 PHP supports pre- and post-increment and decrement operators.
 Those unary operators allow to increment or decrement the value by one.

 Increment/decrement Operators

 	Example
 	Name
 	Effect

 	++$a
 	Pre-increment
 	Increments $a by one, then returns $a.

 	$a++
 	Post-increment
 	Returns $a, then increments $a by one.

 	--$a
 	Pre-decrement
 	Decrements $a by one, then returns $a.

 	$a--
 	Post-decrement
 	Returns $a, then decrements $a by one.

 Here's a simple example script:

<?php
echo 'Post-increment:', PHP_EOL;
$a = 5;
var_dump($a++);
var_dump($a);

echo 'Pre-increment:', PHP_EOL;
$a = 5;
var_dump(++$a);
var_dump($a);

echo 'Post-decrement:', PHP_EOL;
$a = 5;
var_dump($a--);
var_dump($a);

echo 'Pre-decrement:', PHP_EOL;
$a = 5;
var_dump(--$a);
var_dump($a);
?>

 The above example will output:

Post-increment:
int(5)
int(6)
Pre-increment:
int(6)
int(6)
Post-decrement:
int(5)
int(4)
Pre-decrement:
int(4)
int(4)

 Warning

 The increment and decrement operators have no effect on values
 of type bool.
 A E_WARNING is emitted as of PHP 8.3.0,
 because this will implicitly cast the value to int in the future.

 The decrement operator has no effect on values
 of type null.
 A E_WARNING is emitted as of PHP 8.3.0,
 because this will implicitly cast the value to int in the future.

 The decrement operator has no effect on non-
 numeric string.
 A E_WARNING is emitted as of PHP 8.3.0,
 because a TypeError will be thrown in the future.

 Note:

 Internal objects that support overloading addition and/or subtraction
 can also be incremented and/or decremented.
 One such internal object is GMP.

 PERL string increment feature

 Warning

 This feature is soft-deprecated as of PHP 8.3.0.
 The str_increment() function should be used instead.

 It is possible to increment a non-
 numeric string
 in PHP. The string must be an alphanumerical ASCII string.
 Which increments letters up to the next letter, when reaching the letter
 Z the increment is carried to the value on the left.
 For example, $a = 'Z'; $a++; turns $a
 into 'AA'.

 Example #1 PERL string increment example

<?php
echo '== Alphabetic strings ==' . PHP_EOL;
$s = 'W';
for ($n=0; $n<6; $n++) {
 echo ++$s . PHP_EOL;
}
// Alphanumeric strings behave differently
echo '== Alphanumeric strings ==' . PHP_EOL;
$d = 'A8';
for ($n=0; $n<6; $n++) {
 echo ++$d . PHP_EOL;
}
$d = 'A08';
for ($n=0; $n<6; $n++) {
 echo ++$d . PHP_EOL;
}
?>

 The above example will output:

== Alphabetic strings ==
X
Y
Z
AA
AB
AC
== Alphanumeric strings ==
A9
B0
B1
B2
B3
B4
A09
A10
A11
A12
A13
A14

 Warning

 If the alphanumerical string can be interpreted as a
 numeric string
 it will be cast to an int or float.
 This is particularly an issue with strings that look like a floating point
 numbers written in exponential notation.
 The str_increment() function does not suffer from
 these implicit type cast.

 Example #2 Alphanumerical string converted to float

<?php
$s = "5d9";
var_dump(++$s);
var_dump(++$s);
?>

 The above example will output:

string(3) "5e0"
float(6)

 This is because the value "5e0" is interpreted
 as a float and cast to the value 5.0
 before being incremented.

 Assignment Operators

 The basic assignment operator is "=". Your first inclination might
 be to think of this as "equal to". Don't. It really means that the
 left operand gets set to the value of the expression on the
 right (that is, "gets set to").

 The value of an assignment expression is the value assigned. That
 is, the value of "$a = 3" is 3. This allows you to do some tricky
 things:

<?php

$a = ($b = 4) + 5; // $a is equal to 9 now, and $b has been set to 4.

?>

 In addition to the basic assignment operator, there are "combined
 operators" for all of the binary
 arithmetic, array union and string operators that allow you to use a value in an
 expression and then set its value to the result of that expression. For
 example:

<?php

$a = 3;
$a += 5; // sets $a to 8, as if we had said: $a = $a + 5;
$b = "Hello ";
$b .= "There!"; // sets $b to "Hello There!", just like $b = $b . "There!";

?>

 Note that the assignment copies the original variable to the new
 one (assignment by value), so changes to one will not affect the
 other. This may also have relevance if you need to copy something
 like a large array inside a tight loop.

 An exception to the usual assignment by value behaviour within PHP occurs
 with objects, which are assigned by reference.
 Objects may be explicitly copied via the clone keyword.

 Assignment by Reference

 Assignment by reference is also supported, using the
 "$var = &$othervar;" syntax.
 Assignment by reference means that both variables end up pointing at the
 same data, and nothing is copied anywhere.

 Example #1 Assigning by reference

<?php
$a = 3;
$b = &$a; // $b is a reference to $a

print "$a\n"; // prints 3
print "$b\n"; // prints 3

$a = 4; // change $a

print "$a\n"; // prints 4
print "$b\n"; // prints 4 as well, since $b is a reference to $a, which has
 // been changed
?>

 The new
 operator returns a reference automatically, as such assigning the result of
 new by reference is an error.

<?php
class C {}

$o = &new C;
?>

 The above example will output:

Parse error: syntax error, unexpected 'new' (T_NEW) in …

 More information on references and their potential uses can be found in
 the References Explained
 section of the manual.

 Arithmetic Assignment Operators

 	Example
 	Equivalent
 	Operation

 	$a += $b
 	$a = $a + $b
 	Addition

 	$a -= $b
 	$a = $a - $b
 	Subtraction

 	$a *= $b
 	$a = $a * $b
 	Multiplication

 	$a /= $b
 	$a = $a / $b
 	Division

 	$a %= $b
 	$a = $a % $b
 	Modulus

 	$a **= $b
 	$a = $a ** $b
 	Exponentiation

 Bitwise Assignment Operators

 	Example
 	Equivalent
 	Operation

 	$a &= $b
 	$a = $a & $b
 	Bitwise And

 	$a |= $b
 	$a = $a | $b
 	Bitwise Or

 	$a ^= $b
 	$a = $a ^ $b
 	Bitwise Xor

 	$a <<= $b
 	$a = $a << $b
 	Left Shift

 	$a >>= $b
 	$a = $a >> $b
 	Right Shift

 Other Assignment Operators

 	Example
 	Equivalent
 	Operation

 	$a .= $b
 	$a = $a . $b
 	String Concatenation

 	$a ??= $b
 	$a = $a ?? $b
 	Null Coalesce

 See Also

 	arithmetic operators

 	bitwise operators

 	null coalescing operator

 Bitwise Operators

 Bitwise operators allow evaluation and manipulation of specific
 bits within an integer.

 Bitwise Operators

 	Example
 	Name
 	Result

 	$a & $b
 	And
 	Bits that are set in both $a and $b are set.

 	$a | $b
 	Or (inclusive or)
 	Bits that are set in either $a or $b are set.

 	$a ^ $b
 	Xor (exclusive or)
 	
 Bits that are set in $a or $b but not both are set.

 	~ $a
 	Not
 	
 Bits that are set in $a are not set, and vice versa.

 	$a << $b
 	Shift left
 	
 Shift the bits of $a $b steps to the left (each step means
 "multiply by two")

 	$a >> $b
 	Shift right
 	
 Shift the bits of $a $b steps to the right (each step means
 "divide by two")

 Bit shifting in PHP is arithmetic.
 Bits shifted off either end are discarded.
 Left shifts have zeros shifted in on the right while the sign
 bit is shifted out on the left, meaning the sign of an operand
 is not preserved.
 Right shifts have copies of the sign bit shifted in on the left,
 meaning the sign of an operand is preserved.

 Use parentheses to ensure the desired
 precedence.
 For example, $a & $b == true evaluates
 the equivalency then the bitwise and; while
 ($a & $b) == true evaluates the bitwise and
 then the equivalency.

 If both operands for the &, | and
 ^ operators are strings, then the operation will be
 performed on the ASCII values of the characters that make up the strings and
 the result will be a string. In all other cases, both operands will be
 converted to integers
 and the result will be an integer.

 If the operand for the ~ operator is a string, the
 operation will be performed on the ASCII values of the characters that make
 up the string and the result will be a string, otherwise the operand and the
 result will be treated as integers.

 Both operands and the result for the << and
 >> operators are always treated as integers.

 PHP's error_reporting ini setting uses bitwise values,
 providing a real-world demonstration of turning
 bits off. To show all errors, except for notices,
 the php.ini file instructions say to use:
 E_ALL & ~E_NOTICE

 This works by starting with E_ALL:
 00000000000000000111011111111111
 Then taking the value of E_NOTICE...
 00000000000000000000000000001000
 ... and inverting it via ~:
 11111111111111111111111111110111
 Finally, it uses AND (&) to find the bits turned
 on in both values:
 00000000000000000111011111110111

 Another way to accomplish that is using XOR (^)
 to find bits that are on in only one value or the other:
 E_ALL ^ E_NOTICE

 error_reporting can also be used to demonstrate turning bits on.
 The way to show just errors and recoverable errors is:
 E_ERROR | E_RECOVERABLE_ERROR

 This process combines E_ERROR
 00000000000000000000000000000001
 and
 00000000000000000001000000000000
 using the OR (|) operator
 to get the bits turned on in either value:
 00000000000000000001000000000001

 Example #1 Bitwise AND, OR and XOR operations on integers

<?php
/*
 * Ignore the top section,
 * it is just formatting to make output clearer.
 */

$format = '(%1$2d = %1$04b) = (%2$2d = %2$04b)'
 . ' %3$s (%4$2d = %4$04b)' . "\n";

echo <<<EOH
 --------- --------- -- ---------
 result value op test
 --------- --------- -- ---------
EOH;

/*
 * Here are the examples.
 */

$values = array(0, 1, 2, 4, 8);
$test = 1 + 4;

echo "\n Bitwise AND \n";
foreach ($values as $value) {
 $result = $value & $test;
 printf($format, $result, $value, '&', $test);
}

echo "\n Bitwise Inclusive OR \n";
foreach ($values as $value) {
 $result = $value | $test;
 printf($format, $result, $value, '|', $test);
}

echo "\n Bitwise Exclusive OR (XOR) \n";
foreach ($values as $value) {
 $result = $value ^ $test;
 printf($format, $result, $value, '^', $test);
}
?>

 The above example will output:

 --------- --------- -- ---------
 result value op test
 --------- --------- -- ---------
 Bitwise AND
(0 = 0000) = (0 = 0000) & (5 = 0101)
(1 = 0001) = (1 = 0001) & (5 = 0101)
(0 = 0000) = (2 = 0010) & (5 = 0101)
(4 = 0100) = (4 = 0100) & (5 = 0101)
(0 = 0000) = (8 = 1000) & (5 = 0101)

 Bitwise Inclusive OR
(5 = 0101) = (0 = 0000) | (5 = 0101)
(5 = 0101) = (1 = 0001) | (5 = 0101)
(7 = 0111) = (2 = 0010) | (5 = 0101)
(5 = 0101) = (4 = 0100) | (5 = 0101)
(13 = 1101) = (8 = 1000) | (5 = 0101)

 Bitwise Exclusive OR (XOR)
(5 = 0101) = (0 = 0000) ^ (5 = 0101)
(4 = 0100) = (1 = 0001) ^ (5 = 0101)
(7 = 0111) = (2 = 0010) ^ (5 = 0101)
(1 = 0001) = (4 = 0100) ^ (5 = 0101)
(13 = 1101) = (8 = 1000) ^ (5 = 0101)

 Example #2 Bitwise XOR operations on strings

<?php
echo 12 ^ 9; // Outputs '5'

echo "12" ^ "9"; // Outputs the Backspace character (ascii 8)
 // ('1' (ascii 49)) ^ ('9' (ascii 57)) = #8

echo "hallo" ^ "hello"; // Outputs the ascii values #0 #4 #0 #0 #0
 // 'a' ^ 'e' = #4

echo 2 ^ "3"; // Outputs 1
 // 2 ^ ((int)"3") == 1

echo "2" ^ 3; // Outputs 1
 // ((int)"2") ^ 3 == 1
?>

 Example #3 Bit shifting on integers

<?php
/*
 * Here are the examples.
 */

echo "\n--- BIT SHIFT RIGHT ON POSITIVE INTEGERS ---\n";

$val = 4;
$places = 1;
$res = $val >> $places;
p($res, $val, '>>', $places, 'copy of sign bit shifted into left side');

$val = 4;
$places = 2;
$res = $val >> $places;
p($res, $val, '>>', $places);

$val = 4;
$places = 3;
$res = $val >> $places;
p($res, $val, '>>', $places, 'bits shift out right side');

$val = 4;
$places = 4;
$res = $val >> $places;
p($res, $val, '>>', $places, 'same result as above; can not shift beyond 0');

echo "\n--- BIT SHIFT RIGHT ON NEGATIVE INTEGERS ---\n";

$val = -4;
$places = 1;
$res = $val >> $places;
p($res, $val, '>>', $places, 'copy of sign bit shifted into left side');

$val = -4;
$places = 2;
$res = $val >> $places;
p($res, $val, '>>', $places, 'bits shift out right side');

$val = -4;
$places = 3;
$res = $val >> $places;
p($res, $val, '>>', $places, 'same result as above; can not shift beyond -1');

echo "\n--- BIT SHIFT LEFT ON POSITIVE INTEGERS ---\n";

$val = 4;
$places = 1;
$res = $val << $places;
p($res, $val, '<<', $places, 'zeros fill in right side');

$val = 4;
$places = (PHP_INT_SIZE * 8) - 4;
$res = $val << $places;
p($res, $val, '<<', $places);

$val = 4;
$places = (PHP_INT_SIZE * 8) - 3;
$res = $val << $places;
p($res, $val, '<<', $places, 'sign bits get shifted out');

$val = 4;
$places = (PHP_INT_SIZE * 8) - 2;
$res = $val << $places;
p($res, $val, '<<', $places, 'bits shift out left side');

echo "\n--- BIT SHIFT LEFT ON NEGATIVE INTEGERS ---\n";

$val = -4;
$places = 1;
$res = $val << $places;
p($res, $val, '<<', $places, 'zeros fill in right side');

$val = -4;
$places = (PHP_INT_SIZE * 8) - 3;
$res = $val << $places;
p($res, $val, '<<', $places);

$val = -4;
$places = (PHP_INT_SIZE * 8) - 2;
$res = $val << $places;
p($res, $val, '<<', $places, 'bits shift out left side, including sign bit');

/*
 * Ignore this bottom section,
 * it is just formatting to make output clearer.
 */

function p($res, $val, $op, $places, $note = '') {
 $format = '%0' . (PHP_INT_SIZE * 8) . "b\n";

 printf("Expression: %d = %d %s %d\n", $res, $val, $op, $places);

 echo " Decimal:\n";
 printf(" val=%d\n", $val);
 printf(" res=%d\n", $res);

 echo " Binary:\n";
 printf(' val=' . $format, $val);
 printf(' res=' . $format, $res);

 if ($note) {
 echo " NOTE: $note\n";
 }

 echo "\n";
}
?>

 Output of the above example on 32 bit machines:

--- BIT SHIFT RIGHT ON POSITIVE INTEGERS ---
Expression: 2 = 4 >> 1
 Decimal:
 val=4
 res=2
 Binary:
 val=00000000000000000000000000000100
 res=00000000000000000000000000000010
 NOTE: copy of sign bit shifted into left side

Expression: 1 = 4 >> 2
 Decimal:
 val=4
 res=1
 Binary:
 val=00000000000000000000000000000100
 res=00000000000000000000000000000001

Expression: 0 = 4 >> 3
 Decimal:
 val=4
 res=0
 Binary:
 val=00000000000000000000000000000100
 res=00000000000000000000000000000000
 NOTE: bits shift out right side

Expression: 0 = 4 >> 4
 Decimal:
 val=4
 res=0
 Binary:
 val=00000000000000000000000000000100
 res=00000000000000000000000000000000
 NOTE: same result as above; can not shift beyond 0

--- BIT SHIFT RIGHT ON NEGATIVE INTEGERS ---
Expression: -2 = -4 >> 1
 Decimal:
 val=-4
 res=-2
 Binary:
 val=11111111111111111111111111111100
 res=11111111111111111111111111111110
 NOTE: copy of sign bit shifted into left side

Expression: -1 = -4 >> 2
 Decimal:
 val=-4
 res=-1
 Binary:
 val=11111111111111111111111111111100
 res=11111111111111111111111111111111
 NOTE: bits shift out right side

Expression: -1 = -4 >> 3
 Decimal:
 val=-4
 res=-1
 Binary:
 val=11111111111111111111111111111100
 res=11111111111111111111111111111111
 NOTE: same result as above; can not shift beyond -1

--- BIT SHIFT LEFT ON POSITIVE INTEGERS ---
Expression: 8 = 4 << 1
 Decimal:
 val=4
 res=8
 Binary:
 val=00000000000000000000000000000100
 res=00000000000000000000000000001000
 NOTE: zeros fill in right side

Expression: 1073741824 = 4 << 28
 Decimal:
 val=4
 res=1073741824
 Binary:
 val=00000000000000000000000000000100
 res=01000000000000000000000000000000

Expression: -2147483648 = 4 << 29
 Decimal:
 val=4
 res=-2147483648
 Binary:
 val=00000000000000000000000000000100
 res=10000000000000000000000000000000
 NOTE: sign bits get shifted out

Expression: 0 = 4 << 30
 Decimal:
 val=4
 res=0
 Binary:
 val=00000000000000000000000000000100
 res=00000000000000000000000000000000
 NOTE: bits shift out left side

--- BIT SHIFT LEFT ON NEGATIVE INTEGERS ---
Expression: -8 = -4 << 1
 Decimal:
 val=-4
 res=-8
 Binary:
 val=11111111111111111111111111111100
 res=11111111111111111111111111111000
 NOTE: zeros fill in right side

Expression: -2147483648 = -4 << 29
 Decimal:
 val=-4
 res=-2147483648
 Binary:
 val=11111111111111111111111111111100
 res=10000000000000000000000000000000

Expression: 0 = -4 << 30
 Decimal:
 val=-4
 res=0
 Binary:
 val=11111111111111111111111111111100
 res=00000000000000000000000000000000
 NOTE: bits shift out left side, including sign bit

 Output of the above example on 64 bit machines:

--- BIT SHIFT RIGHT ON POSITIVE INTEGERS ---
Expression: 2 = 4 >> 1
 Decimal:
 val=4
 res=2
 Binary:
 val=000100
 res=0010
 NOTE: copy of sign bit shifted into left side

Expression: 1 = 4 >> 2
 Decimal:
 val=4
 res=1
 Binary:
 val=000100
 res=0001

Expression: 0 = 4 >> 3
 Decimal:
 val=4
 res=0
 Binary:
 val=000100
 res=00
 NOTE: bits shift out right side

Expression: 0 = 4 >> 4
 Decimal:
 val=4
 res=0
 Binary:
 val=000100
 res=00
 NOTE: same result as above; can not shift beyond 0

--- BIT SHIFT RIGHT ON NEGATIVE INTEGERS ---
Expression: -2 = -4 >> 1
 Decimal:
 val=-4
 res=-2
 Binary:
 val=1100
 res=1110
 NOTE: copy of sign bit shifted into left side

Expression: -1 = -4 >> 2
 Decimal:
 val=-4
 res=-1
 Binary:
 val=1100
 res=11
 NOTE: bits shift out right side

Expression: -1 = -4 >> 3
 Decimal:
 val=-4
 res=-1
 Binary:
 val=1100
 res=11
 NOTE: same result as above; can not shift beyond -1

--- BIT SHIFT LEFT ON POSITIVE INTEGERS ---
Expression: 8 = 4 << 1
 Decimal:
 val=4
 res=8
 Binary:
 val=000100
 res=001000
 NOTE: zeros fill in right side

Expression: 4611686018427387904 = 4 << 60
 Decimal:
 val=4
 res=4611686018427387904
 Binary:
 val=000100
 res=0100

Expression: -9223372036854775808 = 4 << 61
 Decimal:
 val=4
 res=-9223372036854775808
 Binary:
 val=000100
 res=1000
 NOTE: sign bits get shifted out

Expression: 0 = 4 << 62
 Decimal:
 val=4
 res=0
 Binary:
 val=000100
 res=00
 NOTE: bits shift out left side

--- BIT SHIFT LEFT ON NEGATIVE INTEGERS ---
Expression: -8 = -4 << 1
 Decimal:
 val=-4
 res=-8
 Binary:
 val=1100
 res=111000
 NOTE: zeros fill in right side

Expression: -9223372036854775808 = -4 << 61
 Decimal:
 val=-4
 res=-9223372036854775808
 Binary:
 val=1100
 res=1000

Expression: 0 = -4 << 62
 Decimal:
 val=-4
 res=0
 Binary:
 val=1100
 res=00
 NOTE: bits shift out left side, including sign bit

 Warning

 Use functions from the gmp extension for
 bitwise manipulation on numbers beyond PHP_INT_MAX.

 See Also

 	pack()

 	unpack()

 	gmp_and()

 	gmp_or()

 	gmp_xor()

 	gmp_testbit()

 	gmp_clrbit()

 Comparison Operators

 Comparison operators, as their name implies, allow you to compare
 two values. You may also be interested in viewing
 the type comparison tables,
 as they show examples of various type related comparisons.

 Comparison Operators

 	Example
 	Name
 	Result

 	$a == $b
 	Equal
 	true if $a is equal to $b after type juggling.

 	$a === $b
 	Identical
 	
 true if $a is equal to $b, and they are of the same
 type.

 	$a != $b
 	Not equal
 	true if $a is not equal to $b after type juggling.

 	$a <> $b
 	Not equal
 	true if $a is not equal to $b after type juggling.

 	$a !== $b
 	Not identical
 	
 true if $a is not equal to $b, or they are not of the same
 type.

 	$a < $b
 	Less than
 	true if $a is strictly less than $b.

 	$a > $b
 	Greater than
 	true if $a is strictly greater than $b.

 	$a <= $b
 	Less than or equal to
 	true if $a is less than or equal to $b.

 	$a >= $b
 	Greater than or equal to
 	true if $a is greater than or equal to $b.

 	$a <=> $b
 	Spaceship
 	
 An int less than, equal to, or greater than zero when
 $a is less than, equal to, or greater than
 $b, respectively.

 If both operands are
 numeric strings,
 or one operand is a number and the other one is a
 numeric string,
 then the comparison is done numerically.
 These rules also apply to the
 switch statement.
 The type conversion does not take place when the comparison is
 === or !== as this involves
 comparing the type as well as the value.

 Warning

 Prior to PHP 8.0.0, if a string is compared to a number
 or a numeric string then the string was converted to a
 number before performing the comparison. This can lead to surprising
 results as can be seen with the following example:

<?php
var_dump(0 == "a");
var_dump("1" == "01");
var_dump("10" == "1e1");
var_dump(100 == "1e2");

switch ("a") {
case 0:
 echo "0";
 break;
case "a":
 echo "a";
 break;
}
?>

 Output of the above example in PHP 7:

bool(true)
bool(true)
bool(true)
bool(true)
0

 Output of the above example in PHP 8:

bool(false)
bool(true)
bool(true)
bool(true)
a

<?php
// Integers
echo 1 <=> 1; // 0
echo 1 <=> 2; // -1
echo 2 <=> 1; // 1

// Floats
echo 1.5 <=> 1.5; // 0
echo 1.5 <=> 2.5; // -1
echo 2.5 <=> 1.5; // 1

// Strings
echo "a" <=> "a"; // 0
echo "a" <=> "b"; // -1
echo "b" <=> "a"; // 1

echo "a" <=> "aa"; // -1
echo "zz" <=> "aa"; // 1

// Arrays
echo [] <=> []; // 0
echo [1, 2, 3] <=> [1, 2, 3]; // 0
echo [1, 2, 3] <=> []; // 1
echo [1, 2, 3] <=> [1, 2, 1]; // 1
echo [1, 2, 3] <=> [1, 2, 4]; // -1

// Objects
$a = (object) ["a" => "b"];
$b = (object) ["a" => "b"];
echo $a <=> $b; // 0

$a = (object) ["a" => "b"];
$b = (object) ["a" => "c"];
echo $a <=> $b; // -1

$a = (object) ["a" => "c"];
$b = (object) ["a" => "b"];
echo $a <=> $b; // 1

// not only values are compared; keys must match
$a = (object) ["a" => "b"];
$b = (object) ["b" => "b"];
echo $a <=> $b; // 1

?>

 For various types, comparison is done according to the following
 table (in order).

 Comparison with Various Types

 	Type of Operand 1
 	Type of Operand 2
 	Result

 	null or string
 	string
 	Convert null to "", numerical or lexical comparison

 	bool or null
 	anything
 	Convert both sides to bool, false < true

 	object
 	object
 	Built-in classes can define its own comparison, different classes
 are incomparable, same class see Object Comparison

 	string, resource, int or float
 	string, resource, int or float
 	Translate strings and resources to numbers, usual math

 	array
 	array
 	Array with fewer members is smaller, if key from operand 1 is not
 found in operand 2 then arrays are incomparable, otherwise - compare
 value by value (see following example)

 	object
 	anything
 	object is always greater

 	array
 	anything
 	array is always greater

 Example #1 Boolean/null comparison

<?php
// Bool and null are compared as bool always
var_dump(1 == TRUE); // TRUE - same as (bool)1 == TRUE
var_dump(0 == FALSE); // TRUE - same as (bool)0 == FALSE
var_dump(100 < TRUE); // FALSE - same as (bool)100 < TRUE
var_dump(-10 < FALSE);// FALSE - same as (bool)-10 < FALSE
var_dump(min(-100, -10, NULL, 10, 100)); // NULL - (bool)NULL < (bool)-100 is FALSE < TRUE
?>

 Example #2 Transcription of standard array comparison

<?php
// Arrays are compared like this with standard comparison operators as well as the spaceship operator.
function standard_array_compare($op1, $op2)
{
 if (count($op1) < count($op2)) {
 return -1; // $op1 < $op2
 } elseif (count($op1) > count($op2)) {
 return 1; // $op1 > $op2
 }
 foreach ($op1 as $key => $val) {
 if (!array_key_exists($key, $op2)) {
 return 1;
 } elseif ($val < $op2[$key]) {
 return -1;
 } elseif ($val > $op2[$key]) {
 return 1;
 }
 }
 return 0; // $op1 == $op2
}
?>

 Warning
 Comparison of floating point numbers

 Because of the way floats are represented internally, you
 should not test two floats for equality.

 See the documentation for float for more information.

 Note:

 Be aware that PHP's type juggling is not always obvious when comparing values of different types,
 particularly comparing ints to bools or ints to strings. It is therefore generally
 advisable to use === and !== comparisons rather than
 == and != in most cases.

 Incomparable Values

 While identity comparison (=== and !==)
 can be applied to arbitrary values, the other comparison operators should only be
 applied to comparable values. The result of comparing incomparable values is
 undefined, and should not be relied upon.

 See Also

 	strcasecmp()

 	strcmp()

 	Array operators

 	Types

 Ternary Operator

 Another conditional operator is the "?:" (or ternary) operator.

 Example #3 Assigning a default value

<?php
// Example usage for: Ternary Operator
$action = (empty($_POST['action'])) ? 'default' : $_POST['action'];

// The above is identical to this if/else statement
if (empty($_POST['action'])) {
 $action = 'default';
} else {
 $action = $_POST['action'];
}
?>

 The expression (expr1) ? (expr2) : (expr3)
 evaluates to expr2 if
 expr1 evaluates to true, and
 expr3 if
 expr1 evaluates to false.

 It is possible to leave out the middle part of the ternary operator.
 Expression expr1 ?: expr3 evaluates to
 the result of expr1 if expr1
 evaluates to true, and expr3 otherwise.
 expr1 is only evaluated once in this case.

 Note:

 Please note that the ternary operator is an expression, and that it
 doesn't evaluate to a variable, but to the result of an expression. This
 is important to know if you want to return a variable by reference.
 The statement return $var == 42 ? $a : $b; in a
 return-by-reference function will therefore not work and a warning is
 issued.

 Note:

 It is recommended to avoid "stacking" ternary expressions.
 PHP's behaviour when using more than one unparenthesized ternary operator within a single
 expression is non-obvious compared to other languages.
 Indeed prior to PHP 8.0.0, ternary expressions were evaluated left-associative,
 instead of right-associative like most other programming languages.
 Relying on left-associativity is deprecated as of PHP 7.4.0.
 As of PHP 8.0.0, the ternary operator is non-associative.

 Example #4 Non-obvious Ternary Behaviour

<?php
// on first glance, the following appears to output 'true'
echo (true ? 'true' : false ? 't' : 'f');

// however, the actual output of the above is 't' prior to PHP 8.0.0
// this is because ternary expressions are left-associative

// the following is a more obvious version of the same code as above
echo ((true ? 'true' : false) ? 't' : 'f');

// here, one can see that the first expression is evaluated to 'true', which
// in turn evaluates to (bool)true, thus returning the true branch of the
// second ternary expression.
?>

 Note:

 Chaining of short-ternaries (?:), however, is stable and behaves reasonably.
 It will evaluate to the first argument that evaluates to a non-falsy value. Note that undefined
 values will still raise a warning.

 Example #5 Short-ternary chaining

<?php
echo 0 ?: 1 ?: 2 ?: 3, PHP_EOL; //1
echo 0 ?: 0 ?: 2 ?: 3, PHP_EOL; //2
echo 0 ?: 0 ?: 0 ?: 3, PHP_EOL; //3
?>

 Null Coalescing Operator

 Another useful shorthand operator is the "??" (or null coalescing) operator.

 Example #6 Assigning a default value

<?php
// Example usage for: Null Coalesce Operator
$action = $_POST['action'] ?? 'default';

// The above is identical to this if/else statement
if (isset($_POST['action'])) {
 $action = $_POST['action'];
} else {
 $action = 'default';
}
?>

 The expression (expr1) ?? (expr2) evaluates to
 expr2 if expr1 is
 null, and expr1 otherwise.

 In particular, this operator does not emit a notice or warning if the left-hand side
 value does not exist, just like isset(). This is especially
 useful on array keys.

 Note:

 Please note that the null coalescing operator is an expression, and that it
 doesn't evaluate to a variable, but to the result of an expression. This
 is important to know if you want to return a variable by reference.
 The statement return $foo ?? $bar; in a
 return-by-reference function will therefore not work and a warning is
 issued.

 Note:

 The null coalescing operator has low precedence. That means if mixing it
 with other operators (such as string concatenation or arithmetic operators)
 parentheses will likely be required.

<?php
// Raises a warning that $name is undefined.
print 'Mr. ' . $name ?? 'Anonymous';

// Prints "Mr. Anonymous"
print 'Mr. ' . ($name ?? 'Anonymous');
?>

 Note:

 Please note that the null coalescing operator allows for simple nesting:

 Example #7 Nesting null coalescing operator

<?php

$foo = null;
$bar = null;
$baz = 1;
$qux = 2;

echo $foo ?? $bar ?? $baz ?? $qux; // outputs 1

?>

 Error Control Operators

 PHP supports one error control operator: the at sign (@).
 When prepended to an expression in PHP, any diagnostic error that might
 be generated by that expression will be suppressed.

 If a custom error handler function is set with
 set_error_handler(), it will still be called even though
 the diagnostic has been suppressed.

 Warning

 Prior to PHP 8.0.0, the error_reporting() called inside the custom error handler
 always returned 0 if the error was suppressed by the @ operator.
 As of PHP 8.0.0, it returns the value of this (bitwise) expression:
 E_ERROR | E_CORE_ERROR | E_COMPILE_ERROR | E_USER_ERROR | E_RECOVERABLE_ERROR | E_PARSE.

 Any error message generated by the expression is available in the "message"
 element of the array returned by error_get_last().
 The result of that function will change on each error, so it needs to be checked early.

<?php
/* Intentional file error */
$my_file = @file ('non_existent_file') or
 die ("Failed opening file: error was '" . error_get_last()['message'] . "'");

// this works for any expression, not just functions:
$value = @$cache[$key];
// will not issue a notice if the index $key doesn't exist.

?>

 Note:

 The @-operator works only on
 expressions.
 A simple rule of thumb is: if one can take the value of something,
 then one can prepend the @ operator to it.
 For instance, it can be prepended to variables, functions calls,
 certain language construct calls (e.g. include),
 and so forth.
 It cannot be prepended to function or class definitions,
 or conditional structures such as if and
 foreach, and so forth.

 Warning

 Prior to PHP 8.0.0, it was possible for the @ operator
 to disable critical errors that will terminate script execution.
 For example, prepending @ to a call of a function
 which did not exist, by being unavailable or mistyped, would cause
 the script to terminate with no indication as to why.

 See Also

 	error_reporting()

 	Error Handling and Logging functions

 Execution Operators

 PHP supports one execution operator: backticks (``). Note that
 these are not single-quotes! PHP will attempt to execute the
 contents of the backticks as a shell command; the output will be
 returned (i.e., it won't simply be dumped to output; it can be
 assigned to a variable). Use of the backtick operator is identical
 to shell_exec().

<?php
$output = `ls -al`;
echo "<pre>$output</pre>";
?>

 Note:

 The backtick operator is disabled when
 shell_exec() is disabled.

 Note:

 Unlike some other languages, backticks have no special meaning
 within double-quoted strings.

 See Also

 	Program Execution functions

 	popen()

 	proc_open()

 	Using PHP from the commandline

 Logical Operators

 Logical Operators

 	Example
 	Name
 	Result

 	$a and $b
 	And
 	true if both $a and $b are true.

 	$a or $b
 	Or
 	true if either $a or $b is true.

 	$a xor $b
 	Xor
 	true if either $a or $b is true, but not both.

 	! $a
 	Not
 	true if $a is not true.

 	$a && $b
 	And
 	true if both $a and $b are true.

 	$a || $b
 	Or
 	true if either $a or $b is true.

 The reason for the two different variations of "and" and "or"
 operators is that they operate at different precedences. (See
 Operator
 Precedence.)

 Example #1 Logical operators illustrated

<?php

// --------------------
// foo() will never get called as those operators are short-circuit

$a = (false && foo());
$b = (true || foo());
$c = (false and foo());
$d = (true or foo());

// --------------------
// "||" has a greater precedence than "or"

// The result of the expression (false || true) is assigned to $e
// Acts like: ($e = (false || true))
$e = false || true;

// The constant false is assigned to $f before the "or" operation occurs
// Acts like: (($f = false) or true)
$f = false or true;

var_dump($e, $f);

// --------------------
// "&&" has a greater precedence than "and"

// The result of the expression (true && false) is assigned to $g
// Acts like: ($g = (true && false))
$g = true && false;

// The constant true is assigned to $h before the "and" operation occurs
// Acts like: (($h = true) and false)
$h = true and false;

var_dump($g, $h);
?>

 The above example will output
something similar to:

bool(true)
bool(false)
bool(false)
bool(true)

 String Operators

 There are two string operators. The first is the
 concatenation operator ('.'), which returns the concatenation of its
 right and left arguments. The second is the concatenating assignment
 operator ('.='), which appends the argument on the right side to
 the argument on the left side. Please read Assignment
 Operators for more information.

<?php
$a = "Hello ";
$b = $a . "World!"; // now $b contains "Hello World!"

$a = "Hello ";
$a .= "World!"; // now $a contains "Hello World!"
?>

 See Also

 	String type

 	String functions

 Array Operators

 Array Operators

 	Example
 	Name
 	Result

 	$a + $b
 	Union
 	Union of $a and $b.

 	$a == $b
 	Equality
 	true if $a and $b have the same key/value pairs.

 	$a === $b
 	Identity
 	true if $a and $b have the same key/value pairs in the same
 order and of the same types.

 	$a != $b
 	Inequality
 	true if $a is not equal to $b.

 	$a <> $b
 	Inequality
 	true if $a is not equal to $b.

 	$a !== $b
 	Non-identity
 	true if $a is not identical to $b.

 The + operator returns the right-hand array appended
 to the left-hand array; for keys that exist in both arrays, the elements
 from the left-hand array will be used, and the matching elements from the
 right-hand array will be ignored.

<?php
$a = array("a" => "apple", "b" => "banana");
$b = array("a" => "pear", "b" => "strawberry", "c" => "cherry");

$c = $a + $b; // Union of $a and $b
echo "Union of \$a and \$b: \n";
var_dump($c);

$c = $b + $a; // Union of $b and $a
echo "Union of \$b and \$a: \n";
var_dump($c);

$a += $b; // Union of $a += $b is $a and $b
echo "Union of \$a += \$b: \n";
var_dump($a);
?>

 When executed, this script will print the following:

Union of $a and $b:
array(3) {
 ["a"]=>
 string(5) "apple"
 ["b"]=>
 string(6) "banana"
 ["c"]=>
 string(6) "cherry"
}
Union of $b and $a:
array(3) {
 ["a"]=>
 string(4) "pear"
 ["b"]=>
 string(10) "strawberry"
 ["c"]=>
 string(6) "cherry"
}
Union of $a += $b:
array(3) {
 ["a"]=>
 string(5) "apple"
 ["b"]=>
 string(6) "banana"
 ["c"]=>
 string(6) "cherry"
}

 Elements of arrays are equal for the comparison if they have the
 same key and value.

 Example #1 Comparing arrays

<?php
$a = array("apple", "banana");
$b = array(1 => "banana", "0" => "apple");

var_dump($a == $b); // bool(true)
var_dump($a === $b); // bool(false)
?>

 See Also

 	Array type

 	Array functions

 Type Operators

 instanceof is used to determine whether a PHP variable
 is an instantiated object of a certain
 class:

 Example #1 Using instanceof with classes

<?php
class MyClass
{
}

class NotMyClass
{
}
$a = new MyClass;

var_dump($a instanceof MyClass);
var_dump($a instanceof NotMyClass);
?>

 The above example will output:

bool(true)
bool(false)

 instanceof can also be used to determine whether a variable
 is an instantiated object of a class that inherits from a parent class:

 Example #2 Using instanceof with inherited classes

<?php
class ParentClass
{
}

class MyClass extends ParentClass
{
}

$a = new MyClass;

var_dump($a instanceof MyClass);
var_dump($a instanceof ParentClass);
?>

 The above example will output:

bool(true)
bool(true)

 To check if an object is not an instanceof a class, the
 logical not
 operator can be used.

 Example #3 Using instanceof to check if object is not an
 instanceof a class

<?php
class MyClass
{
}

$a = new MyClass;
var_dump(!($a instanceof stdClass));
?>

 The above example will output:

bool(true)

 Lastly, instanceof can also be used to determine whether
 a variable is an instantiated object of a class that implements an
 interface:

 Example #4 Using instanceof with interfaces

<?php
interface MyInterface
{
}

class MyClass implements MyInterface
{
}

$a = new MyClass;

var_dump($a instanceof MyClass);
var_dump($a instanceof MyInterface);
?>

 The above example will output:

bool(true)
bool(true)

 Although instanceof is usually used with a literal classname,
 it can also be used with another object or a string variable:

 Example #5 Using instanceof with other variables

<?php
interface MyInterface
{
}

class MyClass implements MyInterface
{
}

$a = new MyClass;
$b = new MyClass;
$c = 'MyClass';
$d = 'NotMyClass';

var_dump($a instanceof $b); // $b is an object of class MyClass
var_dump($a instanceof $c); // $c is a string 'MyClass'
var_dump($a instanceof $d); // $d is a string 'NotMyClass'
?>

 The above example will output:

bool(true)
bool(true)
bool(false)

 instanceof does not throw any error if the variable being tested is not
 an object, it simply returns false. Constants, however, were not allowed
 prior to PHP 7.3.0.

 Example #6 Using instanceof to test other variables

<?php
$a = 1;
$b = NULL;
$c = imagecreate(5, 5);
var_dump($a instanceof stdClass); // $a is an integer
var_dump($b instanceof stdClass); // $b is NULL
var_dump($c instanceof stdClass); // $c is a resource
var_dump(FALSE instanceof stdClass);
?>

 The above example will output:

bool(false)
bool(false)
bool(false)
PHP Fatal error: instanceof expects an object instance, constant given

 As of PHP 7.3.0, constants are allowed on the left-hand-side of the
 instanceof operator.

 Example #7 Using instanceof to test constants

<?php
var_dump(FALSE instanceof stdClass);
?>

 Output of the above example in PHP 7.3:

bool(false)

 As of PHP 8.0.0, instanceof can now be used with arbitrary expressions.
 The expression must be wrapped in parentheses and produce a string.

 Example #8 Using instanceof with an arbitrary expression

<?php

class ClassA extends \stdClass {}
class ClassB extends \stdClass {}
class ClassC extends ClassB {}
class ClassD extends ClassA {}

function getSomeClass(): string
{
 return ClassA::class;
}

var_dump(new ClassA instanceof ('std' . 'Class'));
var_dump(new ClassB instanceof ('Class' . 'B'));
var_dump(new ClassC instanceof ('Class' . 'A'));
var_dump(new ClassD instanceof (getSomeClass()));
?>

 Output of the above example in PHP 8:

bool(true)
bool(true)
bool(false)
bool(true)

 The instanceof operator has a functional variant
 with the is_a() function.

 See Also

 	get_class()

 	is_a()

 Control Structures

Table of Contents
	Introduction
	if
	else
	elseif/else if
	Alternative syntax for control structures
	while
	do-while
	for
	foreach
	break
	continue
	switch
	match
	declare
	return
	require
	include
	require_once
	include_once
	goto

 Introduction

 Any PHP script is built out of a series of statements. A statement
 can be an assignment, a function call, a loop, a conditional
 statement or even a statement that does nothing (an empty
 statement). Statements usually end with a semicolon. In addition,
 statements can be grouped into a statement-group by encapsulating a
 group of statements with curly braces. A statement-group is a
 statement by itself as well. The various statement types are
 described in this chapter.

 See Also

 The following are also considered language constructs even though they are
 referenced under functions in the manual.

 	list()

 	array()

 	echo

 	eval()

 	print

 if

 (PHP 4, PHP 5, PHP 7, PHP 8)

 The if construct is one of the most important
 features of many languages, PHP included. It allows for
 conditional execution of code fragments. PHP features an
 if structure that is similar to that of C:

if (expr)
 statement

 As described in the section about
 expressions, expression is evaluated to its
 Boolean value. If expression evaluates to true,
 PHP will execute statement, and if it evaluates
 to false - it'll ignore it. More information about what values evaluate
 to false can be found in the 'Converting to boolean'
 section.

 The following example would display a is bigger
 than b if $a is bigger
 than $b:

<?php
if ($a > $b)
 echo "a is bigger than b";
?>

 Often you'd want to have more than one statement to be executed
 conditionally. Of course, there's no need to wrap each statement
 with an if clause. Instead, you can group
 several statements into a statement group. For example, this code
 would display a is bigger than b
 if $a is bigger than
 $b, and would then assign the value of
 $a into $b:

<?php
if ($a > $b) {
 echo "a is bigger than b";
 $b = $a;
}
?>

 If statements can be nested infinitely within other
 if statements, which provides you with complete
 flexibility for conditional execution of the various parts of your
 program.

 else

 (PHP 4, PHP 5, PHP 7, PHP 8)

 Often you'd want to execute a statement if a certain condition is
 met, and a different statement if the condition is not met. This
 is what else is for. else
 extends an if statement to execute a statement
 in case the expression in the if statement
 evaluates to false. For example, the following
 code would display a is greater than
 b if $a is greater than
 $b, and a is NOT greater
 than b otherwise:

<?php
if ($a > $b) {
 echo "a is greater than b";
} else {
 echo "a is NOT greater than b";
}
?>

 The else statement is only executed if the
 if expression evaluated to
 false, and if there were any
 elseif expressions - only if they evaluated to
 false as well (see elseif).

 Note:
 Dangling else

 In case of nested if-else statements,
 an else is always associated with the nearest if.

<?php
$a = false;
$b = true;
if ($a)
 if ($b)
 echo "b";
else
 echo "c";
?>

 Despite the indentation (which does not matter for PHP), the else
 is associated with the if ($b), so the example does not produce
 any output. While relying on this behavior is valid, it is recommended to avoid
 it by using curly braces to resolve potential ambiguities.

 elseif/else if

 (PHP 4, PHP 5, PHP 7, PHP 8)

 elseif, as its name suggests, is a combination
 of if and else. Like
 else, it extends an if
 statement to execute a different statement in case the original
 if expression evaluates to
 false. However, unlike
 else, it will execute that alternative
 expression only if the elseif conditional
 expression evaluates to true. For example, the
 following code would display a is bigger than
 b, a equal to b
 or a is smaller than b:

<?php
if ($a > $b) {
 echo "a is bigger than b";
} elseif ($a == $b) {
 echo "a is equal to b";
} else {
 echo "a is smaller than b";
}
?>

 There may be several elseifs within the same
 if statement. The first
 elseif expression (if any) that evaluates to
 true would be executed. In PHP, it's possible to write
 else if (in two words) and the behavior would be identical
 to the one of elseif (in a single word). The syntactic meaning
 is slightly different (the same behavior as C) but the bottom line
 is that both would result in exactly the same behavior.

 The elseif statement is only executed if the
 preceding if expression and any preceding
 elseif expressions evaluated to
 false, and the current
 elseif expression evaluated to
 true.

 Note:

 Note that elseif and else if
 will only be considered exactly the same when using curly brackets
 as in the above example. When using a colon to define
 if/elseif conditions, the use
 of elseif in a single word becomes necessary. PHP
 will fail with a parse error if else if
 is split into two words.

<?php

/* Incorrect Method: */
if ($a > $b):
 echo $a." is greater than ".$b;
else if ($a == $b): // Will not compile.
 echo "The above line causes a parse error.";
endif;

/* Correct Method: */
if ($a > $b):
 echo $a." is greater than ".$b;
elseif ($a == $b): // Note the combination of the words.
 echo $a." equals ".$b;
else:
 echo $a." is neither greater than or equal to ".$b;
endif;

?>

 Alternative syntax for control structures

 (PHP 4, PHP 5, PHP 7, PHP 8)

 PHP offers an alternative syntax for some of its control
 structures; namely, if,
 while, for,
 foreach, and switch.
 In each case, the basic form of the alternate syntax is to change
 the opening brace to a colon (:) and the closing brace to
 endif;, endwhile;,
 endfor;, endforeach;, or
 endswitch;, respectively.

<?php if ($a == 5): ?>
A is equal to 5
<?php endif; ?>

 In the above example, the HTML block "A is equal to 5" is nested within an
 if statement written in the alternative syntax. The
 HTML block would be displayed only if $a is equal to 5.

 The alternative syntax applies to else and
 elseif as well. The following is an
 if structure with elseif and
 else in the alternative format:

<?php
if ($a == 5):
 echo "a equals 5";
 echo "...";
elseif ($a == 6):
 echo "a equals 6";
 echo "!!!";
else:
 echo "a is neither 5 nor 6";
endif;
?>

 Note:

 Mixing syntaxes in the same control block is not supported.

 Warning

 Any output (including whitespace) between a switch
 statement and the first case will result in a syntax
 error. For example, this is invalid:

<?php switch ($foo): ?>
 <?php case 1: ?>
 ...
<?php endswitch; ?>

 Whereas this is valid, as the trailing newline after the
 switch statement is considered part of the closing
 ?> and hence nothing is output between the
 switch and case:

<?php switch ($foo): ?>
<?php case 1: ?>
 ...
<?php endswitch; ?>

 See also while,
 for, and if for further examples.

 while

 (PHP 4, PHP 5, PHP 7, PHP 8)

 while loops are the simplest type of loop in
 PHP. They behave just like their C counterparts. The basic form
 of a while statement is:

while (expr)
 statement

 The meaning of a while statement is simple. It
 tells PHP to execute the nested statement(s) repeatedly, as long
 as the while expression evaluates to
 true. The value of the expression is checked
 each time at the beginning of the loop, so even if this value
 changes during the execution of the nested statement(s), execution
 will not stop until the end of the iteration (each time PHP runs
 the statements in the loop is one iteration). If the
 while expression evaluates to
 false from the very beginning, the nested
 statement(s) won't even be run once.

 Like with the if statement, you can group
 multiple statements within the same while loop
 by surrounding a group of statements with curly braces, or by
 using the alternate syntax:

while (expr):
 statement
 ...
endwhile;

 The following examples are identical, and both print the numbers
 1 through 10:

<?php
/* example 1 */

$i = 1;
while ($i <= 10) {
 echo $i++; /* the printed value would be
 $i before the increment
 (post-increment) */
}

/* example 2 */

$i = 1;
while ($i <= 10):
 echo $i;
 $i++;
endwhile;
?>

 do-while

 (PHP 4, PHP 5, PHP 7, PHP 8)

 do-while loops are very similar to
 while loops, except the truth expression is
 checked at the end of each iteration instead of in the beginning.
 The main difference from regular while loops is
 that the first iteration of a do-while loop is
 guaranteed to run (the truth expression is only checked at the end
 of the iteration), whereas it may not necessarily run with a
 regular while loop (the truth expression is
 checked at the beginning of each iteration, if it evaluates to
 false right from the beginning, the loop
 execution would end immediately).

 There is just one syntax for do-while loops:

<?php
$i = 0;
do {
 echo $i;
} while ($i > 0);
?>

 The above loop would run one time exactly, since after the first
 iteration, when truth expression is checked, it evaluates to
 false ($i is not bigger than 0) and the loop
 execution ends.

 Advanced C users may be familiar with a different usage of the
 do-while loop, to allow stopping execution in
 the middle of code blocks, by encapsulating them with
 do-while (0), and using the break
 statement. The following code fragment demonstrates this:

<?php
do {
 if ($i < 5) {
 echo "i is not big enough";
 break;
 }
 $i *= $factor;
 if ($i < $minimum_limit) {
 break;
 }
 echo "i is ok";

 /* process i */

} while (0);
?>

 It is possible to use the
 goto
 operator instead of this hack.

 for

 (PHP 4, PHP 5, PHP 7, PHP 8)

 for loops are the most complex loops in PHP.
 They behave like their C counterparts. The syntax of a
 for loop is:

for (expr1; expr2; expr3)
 statement

 The first expression (expr1) is
 evaluated (executed) once unconditionally at the beginning of the
 loop.

 In the beginning of each iteration,
 expr2 is evaluated. If it evaluates to
 true, the loop continues and the nested
 statement(s) are executed. If it evaluates to
 false, the execution of the loop ends.

 At the end of each iteration, expr3 is
 evaluated (executed).

 Each of the expressions can be empty or contain multiple
 expressions separated by commas. In expr2, all
 expressions separated by a comma are evaluated but the result is taken
 from the last part.
 expr2 being empty means the loop should
 be run indefinitely (PHP implicitly considers it as
 true, like C). This may not be as useless as
 you might think, since often you'd want to end the loop using a
 conditional break
 statement instead of using the for truth
 expression.

 Consider the following examples. All of them display the numbers
 1 through 10:

<?php
/* example 1 */

for ($i = 1; $i <= 10; $i++) {
 echo $i;
}

/* example 2 */

for ($i = 1; ; $i++) {
 if ($i > 10) {
 break;
 }
 echo $i;
}

/* example 3 */

$i = 1;
for (; ;) {
 if ($i > 10) {
 break;
 }
 echo $i;
 $i++;
}

/* example 4 */

for ($i = 1, $j = 0; $i <= 10; $j += $i, print $i, $i++);
?>

 Of course, the first example appears to be the nicest one (or
 perhaps the fourth), but you may find that being able to use empty
 expressions in for loops comes in handy in many
 occasions.

 PHP also supports the alternate "colon syntax" for
 for loops.

for (expr1; expr2; expr3):
 statement
 ...
endfor;

 It's a common thing to many users to iterate through arrays like in the
 example below.

<?php
/*
 * This is an array with some data we want to modify
 * when running through the for loop.
 */
$people = array(
 array('name' => 'Kalle', 'salt' => 856412),
 array('name' => 'Pierre', 'salt' => 215863)
);

for($i = 0; $i < count($people); ++$i) {
 $people[$i]['salt'] = mt_rand(000000, 999999);
}
?>

 The above code can be slow, because the array size is fetched on
 every iteration. Since the size never changes, the loop be easily
 optimized by using an intermediate variable to store the size instead
 of repeatedly calling count():

<?php
$people = array(
 array('name' => 'Kalle', 'salt' => 856412),
 array('name' => 'Pierre', 'salt' => 215863)
);

for($i = 0, $size = count($people); $i < $size; ++$i) {
 $people[$i]['salt'] = mt_rand(000000, 999999);
}
?>

 foreach

 (PHP 4, PHP 5, PHP 7, PHP 8)

 The foreach construct provides an easy way to
 iterate over arrays. foreach works only on arrays
 and objects, and will issue an error when you try to use it on a variable
 with a different data type or an uninitialized variable. There are two
 syntaxes:

foreach (iterable_expression as $value)
 statement
foreach (iterable_expression as $key => $value)
 statement

 The first form traverses the iterable given by
 iterable_expression. On each iteration, the value of
 the current element is assigned to $value.

 The second form will additionally assign the current element's key to
 the $key variable on each iteration.

 Note that foreach does not modify the internal array
 pointer, which is used by functions such as current()
 and key().

 It is possible to
 customize object iteration.

 In order to be able to directly modify array elements within the loop precede
 $value with &. In that case the value will be assigned by
 reference.

<?php
$arr = array(1, 2, 3, 4);
foreach ($arr as &$value) {
 $value = $value * 2;
}
// $arr is now array(2, 4, 6, 8)
unset($value); // break the reference with the last element
?>

 Warning

 Reference of a $value and the last array element
 remain even after the foreach loop. It is recommended
 to destroy it by unset().
 Otherwise you will experience the following behavior:

<?php
$arr = array(1, 2, 3, 4);
foreach ($arr as &$value) {
 $value = $value * 2;
}
// $arr is now array(2, 4, 6, 8)

// without an unset($value), $value is still a reference to the last item: $arr[3]

foreach ($arr as $key => $value) {
 // $arr[3] will be updated with each value from $arr...
 echo "{$key} => {$value} ";
 print_r($arr);
}
// ...until ultimately the second-to-last value is copied onto the last value

// output:
// 0 => 2 Array ([0] => 2, [1] => 4, [2] => 6, [3] => 2)
// 1 => 4 Array ([0] => 2, [1] => 4, [2] => 6, [3] => 4)
// 2 => 6 Array ([0] => 2, [1] => 4, [2] => 6, [3] => 6)
// 3 => 6 Array ([0] => 2, [1] => 4, [2] => 6, [3] => 6)
?>

 It is possible to iterate a constant array's value by reference:

<?php
foreach (array(1, 2, 3, 4) as &$value) {
 $value = $value * 2;
}
?>

 Note:

 foreach does not support the ability to
 suppress error messages using
 @.

 Some more examples to demonstrate usage:

<?php
/* foreach example 1: value only */

$a = array(1, 2, 3, 17);

foreach ($a as $v) {
 echo "Current value of \$a: $v.\n";
}

/* foreach example 2: value (with its manual access notation printed for illustration) */

$a = array(1, 2, 3, 17);

$i = 0; /* for illustrative purposes only */

foreach ($a as $v) {
 echo "\$a[$i] => $v.\n";
 $i++;
}

/* foreach example 3: key and value */

$a = array(
 "one" => 1,
 "two" => 2,
 "three" => 3,
 "seventeen" => 17
);

foreach ($a as $k => $v) {
 echo "\$a[$k] => $v.\n";
}

/* foreach example 4: multi-dimensional arrays */
$a = array();
$a[0][0] = "a";
$a[0][1] = "b";
$a[1][0] = "y";
$a[1][1] = "z";

foreach ($a as $v1) {
 foreach ($v1 as $v2) {
 echo "$v2\n";
 }
}

/* foreach example 5: dynamic arrays */

foreach (array(1, 2, 3, 4, 5) as $v) {
 echo "$v\n";
}
?>

 Unpacking nested arrays with list()

 (PHP 5 >= 5.5.0, PHP 7, PHP 8)

 It is possible to iterate over an array of arrays and unpack the
 nested array into loop variables by providing a list()
 as the value.

 For example:

<?php
$array = [
 [1, 2],
 [3, 4],
];

foreach ($array as list($a, $b)) {
 // $a contains the first element of the nested array,
 // and $b contains the second element.
 echo "A: $a; B: $b\n";
}
?>

 The above example will output:

A: 1; B: 2
A: 3; B: 4

 You can provide fewer elements in the list() than there
 are in the nested array, in which case the leftover array values will be
 ignored:

<?php
$array = [
 [1, 2],
 [3, 4],
];

foreach ($array as list($a)) {
 // Note that there is no $b here.
 echo "$a\n";
}
?>

 The above example will output:

1
3

 A notice will be generated if there aren't enough array elements to fill
 the list():

<?php
$array = [
 [1, 2],
 [3, 4],
];

foreach ($array as list($a, $b, $c)) {
 echo "A: $a; B: $b; C: $c\n";
}
?>

 The above example will output:

Notice: Undefined offset: 2 in example.php on line 7
A: 1; B: 2; C:

Notice: Undefined offset: 2 in example.php on line 7
A: 3; B: 4; C:

 break

 (PHP 4, PHP 5, PHP 7, PHP 8)

 break ends execution of the current
 for, foreach,
 while, do-while or
 switch structure.

 break accepts an optional numeric argument
 which tells it how many nested enclosing structures are to be
 broken out of. The default value is 1, only
 the immediate enclosing structure is broken out of.

<?php
$arr = array('one', 'two', 'three', 'four', 'stop', 'five');
foreach ($arr as $val) {
 if ($val == 'stop') {
 break; /* You could also write 'break 1;' here. */
 }
 echo "$val
\n";
}

/* Using the optional argument. */

$i = 0;
while (++$i) {
 switch ($i) {
 case 5:
 echo "At 5
\n";
 break 1; /* Exit only the switch. */
 case 10:
 echo "At 10; quitting
\n";
 break 2; /* Exit the switch and the while. */
 default:
 break;
 }
}
?>

 continue

 (PHP 4, PHP 5, PHP 7, PHP 8)

 continue is used within looping structures to
 skip the rest of the current loop iteration and continue execution
 at the condition evaluation and then the beginning of the next iteration.

 Note:

 In PHP the
 switch statement is
 considered a looping structure for the purposes of
 continue. continue behaves like
 break (when no arguments are passed) but will
 raise a warning as this is likely to be a mistake. If a
 switch is inside a loop,
 continue 2 will continue with the next iteration
 of the outer loop.

 continue accepts an optional numeric argument
 which tells it how many levels of enclosing loops it should skip
 to the end of. The default value is 1, thus skipping
 to the end of the current loop.

<?php
$arr = ['zero', 'one', 'two', 'three', 'four', 'five', 'six'];
foreach ($arr as $key => $value) {
 if (0 === ($key % 2)) { // skip members with even key
 continue;
 }
 echo $value . "\n";
}
?>

 The above examples will output:

one
three
five

<?php
$i = 0;
while ($i++ < 5) {
 echo "Outer\n";
 while (1) {
 echo "Middle\n";
 while (1) {
 echo "Inner\n";
 continue 3;
 }
 echo "This never gets output.\n";
 }
 echo "Neither does this.\n";
}
?>

 The above examples will output:

Outer
Middle
Inner
Outer
Middle
Inner
Outer
Middle
Inner
Outer
Middle
Inner
Outer
Middle
Inner

 Omitting the semicolon after continue can lead to
 confusion. Here's an example of what you shouldn't do.

<?php
for ($i = 0; $i < 5; ++$i) {
 if ($i == 2)
 continue
 print "$i\n";
}
?>

 One can expect the result to be:

0
1
3
4

 Changelog for continue

 	Version
 	Description

 	7.3.0
 	
 continue within a switch that is attempting to act like a break statement for the
 switch will trigger an E_WARNING.

 switch

 (PHP 4, PHP 5, PHP 7, PHP 8)

 The switch statement is similar to a series of
 IF statements on the same expression. In many occasions, you may
 want to compare the same variable (or expression) with many
 different values, and execute a different piece of code depending
 on which value it equals to. This is exactly what the
 switch statement is for.

 Note:

 Note that unlike some other languages, the
 continue statement
 applies to switch and acts similar to break. If you
 have a switch inside a loop and wish to continue to the next iteration of
 the outer loop, use continue 2.

 Note:

 Note that switch/case does
 loose comparison.

 In the following example, each code block is equivalent.
 One uses a series of if and
 elseif statements, and the other a
 switch statement. In each case, the output is the same.

 Example #1 switch structure

<?php
// This switch statement:

switch ($i) {
 case 0:
 echo "i equals 0";
 break;
 case 1:
 echo "i equals 1";
 break;
 case 2:
 echo "i equals 2";
 break;
}

// Is equivalent to:

if ($i == 0) {
 echo "i equals 0";
} elseif ($i == 1) {
 echo "i equals 1";
} elseif ($i == 2) {
 echo "i equals 2";
}
?>

 It is important to understand how the switch
 statement is executed in order to avoid mistakes. The
 switch statement executes line by line
 (actually, statement by statement). In the beginning, no code is
 executed. Only when a case statement is found
 whose expression evaluates to a value that matches the value of the
 switch expression does PHP begin to execute the
 statements. PHP continues to execute the statements until the end
 of the switch block, or the first time it sees
 a break statement. If you don't write a
 break statement at the end of a case's
 statement list, PHP will go on executing the statements of the
 following case. For example:

<?php
switch ($i) {
 case 0:
 echo "i equals 0";
 case 1:
 echo "i equals 1";
 case 2:
 echo "i equals 2";
}
?>

 Here, if $i is equal to 0, PHP would execute all of the echo
 statements! If $i is equal to 1, PHP would execute the last two
 echo statements. You would get the expected behavior ('i equals 2'
 would be displayed) only if $i is equal to 2. Thus,
 it is important not to forget break statements
 (even though you may want to avoid supplying them on purpose under
 certain circumstances).

 In a switch statement, the condition is
 evaluated only once and the result is compared to each
 case statement. In an elseif
 statement, the condition is evaluated again. If your condition is
 more complicated than a simple compare and/or is in a tight loop,
 a switch may be faster.

 The statement list for a case can also be empty, which simply
 passes control into the statement list for the next case.

<?php
switch ($i) {
 case 0:
 case 1:
 case 2:
 echo "i is less than 3 but not negative";
 break;
 case 3:
 echo "i is 3";
}
?>

 A special case is the default case. This case matches
 anything that wasn't matched by the other cases. For example:

<?php
switch ($i) {
 case 0:
 echo "i equals 0";
 break;
 case 1:
 echo "i equals 1";
 break;
 case 2:
 echo "i equals 2";
 break;
 default:
 echo "i is not equal to 0, 1 or 2";
}
?>

 Note:

 Multiple default cases will raise a
 E_COMPILE_ERROR error.

 Note:

 Technically the default case may be listed
 in any order. It will only be used if no other case matches.
 However, by convention it is best to place it at the end as the
 last branch.

 If no case branch matches, and there is no default
 branch, then no code will be executed, just as if no if statement was true.

 A case value may be given as an expression. However, that expression will be
 evaluated on its own and then loosely compared with the switch value. That means
 it cannot be used for complex evaluations of the switch value. For example:

<?php
$target = 1;
$start = 3;

switch ($target) {
 case $start - 1:
 print "A";
 break;
 case $start - 2:
 print "B";
 break;
 case $start - 3:
 print "C";
 break;
 case $start - 4:
 print "D";
 break;
}

// Prints "B"
?>

 For more complex comparisons, the value true may be used as the switch value.
 Or, alternatively, if-else blocks instead of switch.

 <?php
$offset = 1;
$start = 3;

switch (true) {
 case $start - $offset === 1:
 print "A";
 break;
 case $start - $offset === 2:
 print "B";
 break;
 case $start - $offset === 3:
 print "C";
 break;
 case $start - $offset === 4:
 print "D";
 break;
}

// Prints "B"
?>

 The alternative syntax for control structures is supported with
 switches. For more information, see Alternative syntax
 for control structures.

<?php
switch ($i):
 case 0:
 echo "i equals 0";
 break;
 case 1:
 echo "i equals 1";
 break;
 case 2:
 echo "i equals 2";
 break;
 default:
 echo "i is not equal to 0, 1 or 2";
endswitch;
?>

 It's possible to use a semicolon instead of a colon after a case like:

<?php
switch($beer)
{
 case 'tuborg';
 case 'carlsberg';
 case 'stella';
 case 'heineken';
 echo 'Good choice';
 break;
 default;
 echo 'Please make a new selection...';
 break;
}
?>

 See Also

 	match

 match

 (PHP 8)

 The match expression branches evaluation based on an
 identity check of a value.
 Similarly to a switch statement, a
 match expression has a subject expression that is
 compared against multiple alternatives. Unlike switch,
 it will evaluate to a value much like ternary expressions.
 Unlike switch, the comparison is an identity check
 (===) rather than a weak equality check (==).
 Match expressions are available as of PHP 8.0.0.

 Example #1 Structure of a match expression

<?php
$return_value = match (subject_expression) {
 single_conditional_expression => return_expression,
 conditional_expression1, conditional_expression2 => return_expression,
};
?>

 Example #2 Basic match usage

<?php
$food = 'cake';

$return_value = match ($food) {
 'apple' => 'This food is an apple',
 'bar' => 'This food is a bar',
 'cake' => 'This food is a cake',
};

var_dump($return_value);
?>

 The above example will output:

string(19) "This food is a cake"

 Note:

 The result of a match expression does not need to be used.

 Note:

 A match expression must be
 terminated by a semicolon ;.

 The match expression is similar to a
 switch statement but has some key differences:

 	

 A match arm compares values strictly (===) instead
 of loosely as the switch statement does.

 	

 A match expression returns a value.

 	

 match arms do not fall-through to later cases the way
 switch statements do.

 	

 A match expression must be exhaustive.

 As switch statements, match
 expressions are executed match arm by match arm.
 In the beginning, no code is executed.
 The conditional expressions are only evaluated if all previous conditional
 expressions failed to match the subject expression.
 Only the return expression corresponding to the matching conditional
 expression will be evaluated.
 For example:

<?php
$result = match ($x) {
 foo() => ...,
 $this->bar() => ..., // $this->bar() isn't called if foo() === $x
 $this->baz => beep(), // beep() isn't called unless $x === $this->baz
 // etc.
};
?>

 match expression arms may contain multiple expressions
 separated by a comma. That is a logical OR, and is a short-hand for multiple
 match arms with the same right-hand side.

<?php
$result = match ($x) {
 // This match arm:
 $a, $b, $c => 5,
 // Is equivalent to these three match arms:
 $a => 5,
 $b => 5,
 $c => 5,
};
?>

 A special case is the default pattern.
 This pattern matches anything that wasn't previously matched.
 For example:

<?php
$expressionResult = match ($condition) {
 1, 2 => foo(),
 3, 4 => bar(),
 default => baz(),
};
?>

 Note:

 Multiple default patterns will raise a
 E_FATAL_ERROR error.

 A match expression must be exhaustive. If the
 subject expression is not handled by any match arm an
 UnhandledMatchError is thrown.

 Example #3 Example of an unhandled match expression

<?php
$condition = 5;

try {
 match ($condition) {
 1, 2 => foo(),
 3, 4 => bar(),
 };
} catch (\UnhandledMatchError $e) {
 var_dump($e);
}
?>

 The above example will output:

object(UnhandledMatchError)#1 (7) {
 ["message":protected]=>
 string(33) "Unhandled match value of type int"
 ["string":"Error":private]=>
 string(0) ""
 ["code":protected]=>
 int(0)
 ["file":protected]=>
 string(9) "/in/ICgGK"
 ["line":protected]=>
 int(6)
 ["trace":"Error":private]=>
 array(0) {
 }
 ["previous":"Error":private]=>
 NULL
}

 Using match expressions to handle non identity checks

 It is possible to use a match expression to handle
 non-identity conditional cases by using true as the subject
 expression.

 Example #4 Using a generalized match expressions to branch on integer ranges

<?php

$age = 23;

$result = match (true) {
 $age >= 65 => 'senior',
 $age >= 25 => 'adult',
 $age >= 18 => 'young adult',
 default => 'kid',
};

var_dump($result);
?>

 The above example will output:

string(11) "young adult"

 Example #5 Using a generalized match expressions to branch on string content

<?php

$text = 'Bienvenue chez nous';

$result = match (true) {
 str_contains($text, 'Welcome') || str_contains($text, 'Hello') => 'en',
 str_contains($text, 'Bienvenue') || str_contains($text, 'Bonjour') => 'fr',
 // ...
};

var_dump($result);
?>

 The above example will output:

string(2) "fr"

 declare

 (PHP 4, PHP 5, PHP 7, PHP 8)

 The declare construct is used to
 set execution directives for a block of code.
 The syntax of declare is similar to
 the syntax of other flow control constructs:

declare (directive)
 statement

 The directive section allows the
 behavior of the declare block to
 be set.
 Currently only three directives are recognized: the
 ticks directive (See below for more
 information on the
 ticks
 directive), the encoding directive (See below for more
 information on the
 encoding
 directive) and the strict_types directive (See for more
 information the
 strict typing
 section on the type declarations page)

 As directives are handled as the file is being compiled, only literals may
 be given as directive values. Variables and constants cannot be used. To
 illustrate:

<?php
// This is valid:
declare(ticks=1);

// This is invalid:
const TICK_VALUE = 1;
declare(ticks=TICK_VALUE);
?>

 The statement part of the
 declare block will be executed - how
 it is executed and what side effects occur during execution
 may depend on the directive set in the
 directive block.

 The declare construct can also be used in the global
 scope, affecting all code following it (however if the file with
 declare was included then it does not affect the parent
 file).

<?php
// these are the same:

// you can use this:
declare(ticks=1) {
 // entire script here
}

// or you can use this:
declare(ticks=1);
// entire script here
?>

 Ticks

 A tick is an event that occurs for every
 N low-level tickable statements executed
 by the parser within the declare block.
 The value for N is specified
 using ticks=N
 within the declare block's
 directive section.

 Not all statements are tickable. Typically, condition
 expressions and argument expressions are not tickable.

 The event(s) that occur on each tick are specified using the
 register_tick_function(). See the example
 below for more details. Note that more than one event can occur
 for each tick.

 Example #1 Tick usage example

<?php

declare(ticks=1);

// A function called on each tick event
function tick_handler()
{
 echo "tick_handler() called\n";
}

register_tick_function('tick_handler'); // causes a tick event

$a = 1; // causes a tick event

if ($a > 0) {
 $a += 2; // causes a tick event
 print $a; // causes a tick event
}

?>

 See also register_tick_function() and
 unregister_tick_function().

 Encoding

 A script's encoding can be specified per-script using the encoding directive.

 Example #2 Declaring an encoding for the script.

<?php
declare(encoding='ISO-8859-1');
// code here
?>

 Caution

 When combined with namespaces, the only legal syntax for declare
 is declare(encoding='...'); where ...
 is the encoding value. declare(encoding='...') {}
 will result in a parse error when combined with namespaces.

 See also zend.script_encoding.

 return

 (PHP 4, PHP 5, PHP 7, PHP 8)

 return returns program control to the calling module.
 Execution resumes at the expression following the called module's invocation.

 If called from within a function, the return
 statement immediately ends execution of the current function, and
 returns its argument as the value of the function
 call. return also ends the execution of
 an eval() statement or script file.

 If called from the global scope, then execution of the current
 script file is ended. If the current script file was
 included or required,
 then control is passed back to the calling file. Furthermore, if
 the current script file was included, then
 the value given to return will be returned as
 the value of the include call. If
 return is called from within the main script
 file, then script execution ends. If the current script file was
 named by the auto_prepend_file or auto_append_file
 configuration options in php.ini,
 then that script file's execution is ended.

 For more information, see Returning values.

 Note:

 Note that since return is a language
 construct and not a function, the parentheses surrounding its
 argument are not required and their use is discouraged.

 Note:

 If no parameter is supplied, then the parentheses must be omitted
 and null will be
 returned. Calling return with parentheses but
 with no arguments will result in a parse error.

 As of PHP 7.1.0, return statements without an argument in functions which declare a return type trigger E_COMPILE_ERROR,
 unless the return type is void, in which case return statements
 with an argument trigger that error.

 require

 (PHP 4, PHP 5, PHP 7, PHP 8)

 require is identical to include
 except upon failure it will also produce a fatal E_COMPILE_ERROR
 level error. In other words, it will halt the script whereas
 include only emits a warning
 (E_WARNING) which allows the script to continue.

 See the include documentation for how this works.

 include

 (PHP 4, PHP 5, PHP 7, PHP 8)

 The include expression includes and evaluates
 the specified file.

 The documentation below also applies to require.

 Files are included based on the file path given or, if none is given, the
 include_path specified. If the file
 isn't found in the include_path,
 include will finally check in the calling script's own
 directory and the current working directory before failing. The
 include construct will emit an
 E_WARNING if
 it cannot find a file; this is different behavior from
 require, which will emit an
 E_ERROR.

 Note that both include and require
 raise additional E_WARNINGs, if the file cannot be
 accessed, before raising the final E_WARNING or
 E_ERROR, respectively.

 If a path is defined — whether absolute (starting with a drive letter
 or \ on Windows, or / on Unix/Linux
 systems) or relative to the current directory (starting with
 . or ..) — the
 include_path will be ignored
 altogether. For example, if a filename begins with ../,
 the parser will look in the parent directory to find the requested file.

 For more information on how PHP handles including files and the include path,
 see the documentation for include_path.

 When a file is included, the code it contains inherits the
 variable scope of the
 line on which the include occurs. Any variables available at that line
 in the calling file will be available within the called file, from that
 point forward.
 However, all functions and classes defined in the included file have the
 global scope.

 Example #1 Basic include example

vars.php
<?php

$color = 'green';
$fruit = 'apple';

?>

test.php
<?php

echo "A $color $fruit"; // A

include 'vars.php';

echo "A $color $fruit"; // A green apple

?>

 If the include occurs inside a function within the calling file,
 then all of the code contained in the called file will behave as
 though it had been defined inside that function. So, it will follow
 the variable scope of that function.
 An exception to this rule are magic constants which are
 evaluated by the parser before the include occurs.

 Example #2 Including within functions

<?php

function foo()
{
 global $color;

 include 'vars.php';

 echo "A $color $fruit";
}

/* vars.php is in the scope of foo() so *
* $fruit is NOT available outside of this *
* scope. $color is because we declared it *
* as global. */

foo(); // A green apple
echo "A $color $fruit"; // A green

?>

 When a file is included, parsing drops out of PHP mode and
 into HTML mode at the beginning of the target file, and resumes
 again at the end. For this reason, any code inside the target
 file which should be executed as PHP code must be enclosed within
 valid PHP start
 and end tags.

 If "URL include wrappers"
 are enabled in PHP,
 you can specify the file to be included using a URL (via HTTP or
 other supported wrapper - see Supported Protocols and Wrappers for a list
 of protocols) instead of a local pathname. If the target server interprets
 the target file as PHP code, variables may be passed to the included
 file using a URL request string as used with HTTP GET. This is
 not strictly speaking the same thing as including the file and having
 it inherit the parent file's variable scope; the script is actually
 being run on the remote server and the result is then being
 included into the local script.

 Example #3 include through HTTP

<?php

/* This example assumes that www.example.com is configured to parse .php
* files and not .txt files. Also, 'Works' here means that the variables
* $foo and $bar are available within the included file. */

// Won't work; file.txt wasn't handled by www.example.com as PHP
include 'http://www.example.com/file.txt?foo=1&bar=2';

// Won't work; looks for a file named 'file.php?foo=1&bar=2' on the
// local filesystem.
include 'file.php?foo=1&bar=2';

// Works.
include 'http://www.example.com/file.php?foo=1&bar=2';
?>

 Warning
 Security warning

 Remote file may be processed at the remote server (depending on the file
 extension and the fact if the remote server runs PHP or not) but it still
 has to produce a valid PHP script because it will be processed at the
 local server. If the file from the remote server should be processed
 there and outputted only, readfile() is much better
 function to use. Otherwise, special care should be taken to secure the
 remote script to produce a valid and desired code.

 See also Remote files,
 fopen() and file() for related
 information.

 Handling Returns: include returns
 FALSE on failure and raises a warning. Successful
 includes, unless overridden by the included file, return
 1. It is possible to execute a return
 statement inside an included file in order to terminate processing in
 that file and return to the script which called it. Also, it's possible
 to return values from included files. You can take the value of the
 include call as you would for a normal function. This is not, however,
 possible when including remote files unless the output of the remote
 file has valid PHP start
 and end tags (as with any local file). You can declare the
 needed variables within those tags and they will be introduced at
 whichever point the file was included.

 Because include is a special language construct,
 parentheses are not needed around its argument. Take care when comparing
 return value.

 Example #4 Comparing return value of include

<?php
// won't work, evaluated as include(('vars.php') == TRUE), i.e. include('1')
if (include('vars.php') == TRUE) {
 echo 'OK';
}

// works
if ((include 'vars.php') == TRUE) {
 echo 'OK';
}
?>

 Example #5 include and the return statement

return.php
<?php

$var = 'PHP';

return $var;

?>

noreturn.php
<?php

$var = 'PHP';

?>

testreturns.php
<?php

$foo = include 'return.php';

echo $foo; // prints 'PHP'

$bar = include 'noreturn.php';

echo $bar; // prints 1

?>

 $bar is the value 1 because the include
 was successful. Notice the difference between the above examples. The first uses
 return within the included file while the other does not.
 If the file can't be included, false is returned and
 E_WARNING is issued.

 If there are functions defined in the included file, they can be used in the
 main file independent if they are before return or after.
 If the file is included twice, PHP will raise a fatal error because the
 functions were already declared.
 It is recommended to use include_once instead of
 checking if the file was already included and conditionally return inside
 the included file.

 Another way to "include" a PHP file into a variable is to capture the
 output by using the Output Control
 Functions with include. For example:

 Example #6 Using output buffering to include a PHP file into a string

<?php
$string = get_include_contents('somefile.php');

function get_include_contents($filename) {
 if (is_file($filename)) {
 ob_start();
 include $filename;
 return ob_get_clean();
 }
 return false;
}

?>

 In order to automatically include files within scripts, see also the
 auto_prepend_file and
 auto_append_file
 configuration options in php.ini.

 Note: Because this is a
language construct and not a function, it cannot be called using
variable functions,
or named arguments.

 See also require, require_once,
 include_once, get_included_files(),
 readfile(), virtual(), and
 include_path.

 require_once

 (PHP 4, PHP 5, PHP 7, PHP 8)

 The require_once expression is identical to
 require except PHP will check if the file has
 already been included, and if so, not include (require) it again.

 See the include_once documentation for information
 about the _once behaviour, and how it differs from
 its non _once siblings.

 include_once

 (PHP 4, PHP 5, PHP 7, PHP 8)

 The include_once statement includes and evaluates
 the specified file during the execution of the script.
 This is a behavior similar to the include statement,
 with the only difference being that if the code from a file has already
 been included, it will not be included again, and include_once returns true. As the name suggests,
 the file will be included just once.

 include_once may be used in cases where
 the same file might be included and evaluated more than once during a
 particular execution of a script, so in this case it may help avoid
 problems such as function redefinitions, variable value reassignments, etc.

 See the include documentation for information about
 how this function works.

 goto

 (PHP 5 >= 5.3.0, PHP 7, PHP 8)

 [image: What's the worse thing that could happen if you use goto?]

 Image courtesy of xkcd

 The goto operator can be used to jump to another
 section in the program. The target point is specified by a case-sensitive label
 followed by a colon, and the instruction is given as
 goto followed by the desired target label. This
 is not a full unrestricted goto. The target
 label must be within the same file and context, meaning that you cannot jump
 out of a function or method, nor can you jump into one. You also
 cannot jump into any sort of loop or switch structure. You may jump
 out of these, and a common use is to use a goto
 in place of a multi-level break.

 Example #1 goto example

<?php

goto a;
echo 'Foo';

a:
echo 'Bar';

?>

 The above example will output:

Bar

 Example #2 goto loop example

<?php

for ($i = 0, $j = 50; $i < 100; $i++) {
 while ($j--) {
 if ($j == 17) {
 goto end;
 }
 }
}
echo "i = $i";
end:
echo 'j hit 17';

?>

 The above example will output:

j hit 17

 Example #3 This will not work

<?php

goto loop;
for ($i = 0, $j = 50; $i < 100; $i++) {
 while ($j--) {
 loop:
 }
}
echo "$i = $i";

?>

 The above example will output:

Fatal error: 'goto' into loop or switch statement is disallowed in
script on line 2

 Functions

Table of Contents
	User-defined functions
	Function arguments
	Returning values
	Variable functions
	Internal (built-in) functions
	Anonymous functions
	Arrow Functions
	First class callable syntax

 User-defined functions

 A function may be defined using syntax such as the following:

 Example #1 Pseudo code to demonstrate function uses

<?php
function foo($arg_1, $arg_2, /* ..., */ $arg_n)
{
 echo "Example function.\n";
 return $retval;
}
?>

 Any valid PHP code may appear inside a function, even other
 functions and class
 definitions.

 Function names follow the same rules as other labels in PHP. A
 valid function name starts with a letter or underscore, followed
 by any number of letters, numbers, or underscores. As a regular
 expression, it would be expressed thus:
 ^[a-zA-Z_\x80-\xff][a-zA-Z0-9_\x80-\xff]*$.

 TipSee also the
Userland Naming Guide.

 Functions need not be defined before they are referenced,
 except when a function is conditionally defined as
 shown in the two examples below.

 When a function is defined in a conditional manner such as the two
 examples shown. Its definition must be processed prior
 to being called.

 Example #2 Conditional functions

<?php

$makefoo = true;

/* We can't call foo() from here
 since it doesn't exist yet,
 but we can call bar() */

bar();

if ($makefoo) {
 function foo()
 {
 echo "I don't exist until program execution reaches me.\n";
 }
}

/* Now we can safely call foo()
 since $makefoo evaluated to true */

if ($makefoo) foo();

function bar()
{
 echo "I exist immediately upon program start.\n";
}

?>

 Example #3 Functions within functions

<?php
function foo()
{
 function bar()
 {
 echo "I don't exist until foo() is called.\n";
 }
}

/* We can't call bar() yet
 since it doesn't exist. */

foo();

/* Now we can call bar(),
 foo()'s processing has
 made it accessible. */

bar();

?>

 All functions and classes in PHP have the global scope - they can be
 called outside a function even if they were defined inside and vice versa.

 PHP does not support function overloading, nor is it possible to
 undefine or redefine previously-declared functions.

 Note:

 Function names are case-insensitive for the ASCII characters A to Z, though it is usually good form
 to call functions as they appear in their declaration.

 Both variable number of
 arguments and default
 arguments are supported in functions. See also the function
 references for
 func_num_args(),
 func_get_arg(), and
 func_get_args() for more information.

 It is possible to call recursive functions in PHP.

 Example #4 Recursive functions

<?php
function recursion($a)
{
 if ($a < 20) {
 echo "$a\n";
 recursion($a + 1);
 }
}
?>

 Note:

 Recursive function/method calls with over 100-200 recursion levels can
 smash the stack and cause a termination of the current script. Especially,
 infinite recursion is considered a programming error.

 Function arguments

 Information may be passed to functions via the argument list,
 which is a comma-delimited list of expressions. The arguments are
 evaluated from left to right, before the function is actually called
 (eager evaluation).

 PHP supports passing arguments by value (the default), passing by
 reference, and default argument
 values. Variable-length
 argument lists and Named Arguments
 are also supported.

 Example #1 Passing arrays to functions

<?php
function takes_array($input)
{
 echo "$input[0] + $input[1] = ", $input[0]+$input[1];
}
?>

 As of PHP 8.0.0, the list of function arguments may include a trailing comma, which
 will be ignored. That is particularly useful in cases where the list of arguments is
 long or contains long variable names, making it convenient to list arguments vertically.

 Example #2 Function Argument List with trailing Comma

<?php
function takes_many_args(
 $first_arg,
 $second_arg,
 $a_very_long_argument_name,
 $arg_with_default = 5,
 $again = 'a default string', // This trailing comma was not permitted before 8.0.0.
)
{
 // ...
}
?>

 Passing arguments by reference

 By default, function arguments are passed by value (so that if
 the value of the argument within the function is changed, it does
 not get changed outside of the function). To allow a function to modify its
 arguments, they must be passed by reference.

 To have an argument to a function always passed by reference, prepend an
 ampersand (&) to the argument name in the function definition:

 Example #3 Passing function parameters by reference

<?php
function add_some_extra(&$string)
{
 $string .= 'and something extra.';
}
$str = 'This is a string, ';
add_some_extra($str);
echo $str; // outputs 'This is a string, and something extra.'
?>

 It is an error to pass a value as argument which is supposed to be passed by reference.

 Default argument values

 A function may define default values for arguments using syntax similar
 to assigning a variable. The default is used only when the parameter is
 not specified; in particular, note that passing null does not
 assign the default value.

 Example #4 Use of default parameters in functions

<?php
function makecoffee($type = "cappuccino")
{
 return "Making a cup of $type.\n";
}
echo makecoffee();
echo makecoffee(null);
echo makecoffee("espresso");
?>

 The above example will output:

Making a cup of cappuccino.
Making a cup of .
Making a cup of espresso.

 Default parameter values may be scalar values, arrays,
 the special type null, and as of PHP 8.1.0, objects using the
 new ClassName() syntax.

 Example #5 Using non-scalar types as default values

<?php
function makecoffee($types = array("cappuccino"), $coffeeMaker = NULL)
{
 $device = is_null($coffeeMaker) ? "hands" : $coffeeMaker;
 return "Making a cup of ".join(", ", $types)." with $device.\n";
}
echo makecoffee();
echo makecoffee(array("cappuccino", "lavazza"), "teapot");?>

 The above example will output:

Making a cup of cappuccino with hands.
Making a cup of cappuccino, lavazza with teapot.

 Example #6 Using objects as default values (as of PHP 8.1.0)

<?php
class DefaultCoffeeMaker {
 public function brew() {
 return "Making coffee.\n";
 }
}
class FancyCoffeeMaker {
 public function brew() {
 return "Crafting a beautiful coffee just for you.\n";
 }
}
function makecoffee($coffeeMaker = new DefaultCoffeeMaker)
{
 return $coffeeMaker->brew();
}
echo makecoffee();
echo makecoffee(new FancyCoffeeMaker);
?>

 The above example will output:

Making coffee.
Crafting a beautiful coffee just for you.

 The default value must be a constant expression, not (for
 example) a variable, a class member or a function call.

 Note that any optional arguments should be specified after any
 required arguments, otherwise they cannot be omitted from calls.
 Consider the following example:

 Example #7 Incorrect usage of default function arguments

<?php
function makeyogurt($container = "bowl", $flavour)
{
 return "Making a $container of $flavour yogurt.\n";
}

echo makeyogurt("raspberry"); // "raspberry" is $container, not $flavour
?>

 The above example will output:

Fatal error: Uncaught ArgumentCountError: Too few arguments
 to function makeyogurt(), 1 passed in example.php on line 42

 Now, compare the above with this:

 Example #8 Correct usage of default function arguments

<?php
function makeyogurt($flavour, $container = "bowl")
{
 return "Making a $container of $flavour yogurt.\n";
}

echo makeyogurt("raspberry"); // "raspberry" is $flavour
?>

 The above example will output:

Making a bowl of raspberry yogurt.

 As of PHP 8.0.0, named arguments
 can be used to skip over multiple optional parameters.

 Example #9 Correct usage of default function arguments

<?php
function makeyogurt($container = "bowl", $flavour = "raspberry", $style = "Greek")
{
 return "Making a $container of $flavour $style yogurt.\n";
}

echo makeyogurt(style: "natural");
?>

 The above example will output:

Making a bowl of raspberry natural yogurt.

 As of PHP 8.0.0, declaring mandatory arguments after optional arguments
 is deprecated. This can generally be resolved by
 dropping the default value, since it will never be used.
 One exception to this rule are arguments of the form
 Type $param = null, where the null default makes the type implicitly
 nullable. This usage remains allowed, though it is recommended to use an
 explicit nullable type instead.

 Example #10 Declaring optional arguments after mandatory arguments

<?php
 function foo($a = [], $b) {} // Default not used; deprecated as of PHP 8.0.0
 function foo($a, $b) {} // Functionally equivalent, no deprecation notice

 function bar(A $a = null, $b) {} // Still allowed; $a is required but nullable
 function bar(?A $a, $b) {} // Recommended
 ?>

 Note:

 As of PHP 7.1.0, omitting a parameter which does not specify a default
 throws an ArgumentCountError; in previous versions
 it raised a Warning.

 Note:

 Arguments that are passed by reference may have a default value.

 Variable-length argument lists

 PHP has support for variable-length argument lists in
 user-defined functions by using the
 ... token.

 Argument lists may include the
 ... token to denote that the function accepts a
 variable number of arguments. The arguments will be passed into the
 given variable as an array:

 Example #11 Using ... to access variable arguments

<?php
function sum(...$numbers) {
 $acc = 0;
 foreach ($numbers as $n) {
 $acc += $n;
 }
 return $acc;
}

echo sum(1, 2, 3, 4);
?>

 The above example will output:

10

 ... can also be used when calling functions to unpack
 an array or Traversable variable or
 literal into the argument list:

 Example #12 Using ... to provide arguments

<?php
function add($a, $b) {
 return $a + $b;
}

echo add(...[1, 2])."\n";

$a = [1, 2];
echo add(...$a);
?>

 The above example will output:

3
3

 You may specify normal positional arguments before the
 ... token. In this case, only the trailing arguments
 that don't match a positional argument will be added to the array
 generated by

 It is also possible to add a
 type declaration before the
 ... token. If this is present, then all arguments
 captured by ... must match that parameter type.

 Example #13 Type declared variable arguments

<?php
function total_intervals($unit, DateInterval ...$intervals) {
 $time = 0;
 foreach ($intervals as $interval) {
 $time += $interval->$unit;
 }
 return $time;
}

$a = new DateInterval('P1D');
$b = new DateInterval('P2D');
echo total_intervals('d', $a, $b).' days';

// This will fail, since null isn't a DateInterval object.
echo total_intervals('d', null);
?>

 The above example will output:

3 days
Catchable fatal error: Argument 2 passed to total_intervals() must be an instance of DateInterval, null given, called in - on line 14 and defined in - on line 2

 Finally, variable arguments can also be passed
 by reference by
 prefixing the ... with an ampersand
 (&).

 Named Arguments

 PHP 8.0.0 introduced named arguments as an extension of the existing
 positional parameters. Named arguments allow passing arguments to a
 function based on the parameter name, rather than the parameter position.
 This makes the meaning of the argument self-documenting, makes the
 arguments order-independent and allows skipping default values arbitrarily.

 Named arguments are passed by prefixing the value with the parameter name
 followed by a colon. Using reserved keywords as parameter names is allowed.
 The parameter name must be an identifier, specifying dynamically
 is not allowed.

 Example #14 Named argument syntax

<?php
myFunction(paramName: $value);
array_foobar(array: $value);

// NOT supported.
function_name($variableStoringParamName: $value);
?>

 Example #15 Positional arguments versus named arguments

<?php
// Using positional arguments:
array_fill(0, 100, 50);

// Using named arguments:
array_fill(start_index: 0, count: 100, value: 50);
?>

 The order in which the named arguments are passed does not matter.

 Example #16 Same example as above with a different order of parameters

<?php
array_fill(value: 50, count: 100, start_index: 0);
?>

 Named arguments can be combined with positional arguments. In this case,
 the named arguments must come after the positional arguments.
 It is also possible to specify only some of the optional arguments of a
 function, regardless of their order.

 Example #17 Combining named arguments with positional arguments

<?php
htmlspecialchars($string, double_encode: false);
// Same as
htmlspecialchars($string, ENT_QUOTES | ENT_SUBSTITUTE | ENT_HTML401, 'UTF-8', false);
?>

 Passing the same parameter multiple times results in an Error exception.

 Example #18 Error thrown when passing the same parameter multiple times

<?php
function foo($param) { ... }

foo(param: 1, param: 2);
// Error: Named parameter $param overwrites previous argument
foo(1, param: 2);
// Error: Named parameter $param overwrites previous argument
?>

 As of PHP 8.1.0, it is possible to use named arguments after unpacking the arguments.
 A named argument must not override an already unpacked argument.

 Example #19 Use named arguments after unpacking

<?php
function foo($a, $b, $c = 3, $d = 4) {
 return $a + $b + $c + $d;
}

var_dump(foo(...[1, 2], d: 40)); // 46
var_dump(foo(...['b' => 2, 'a' => 1], d: 40)); // 46

var_dump(foo(...[1, 2], b: 20)); // Fatal error. Named parameter $b overwrites previous argument
?>

 Returning values

 Values are returned by using the optional return statement. Any
 type may be returned, including arrays and objects. This causes the
 function to end its execution immediately and pass control back to
 the line from which it was called. See return
 for more information.

 Note:

 If the return is omitted the value null will be
 returned.

 Use of return

 Example #1 Use of return

<?php
function square($num)
{
 return $num * $num;
}
echo square(4); // outputs '16'.
?>

 A function can not return multiple values, but similar results can be
 obtained by returning an array.

 Example #2 Returning an array to get multiple values

<?php
function small_numbers()
{
 return [0, 1, 2];
}
// Array destructuring will collect each member of the array individually
[$zero, $one, $two] = small_numbers();

// Prior to 7.1.0, the only equivalent alternative is using list() construct
list($zero, $one, $two) = small_numbers();

?>

 To return a reference from a function, use the reference operator & in
 both the function declaration and when assigning the returned value to a
 variable:

 Example #3 Returning a reference from a function

<?php
function &returns_reference()
{
 return $someref;
}

$newref =& returns_reference();
?>

 For more information on references, please check out References Explained.

 Variable functions

 PHP supports the concept of variable functions. This means that if
 a variable name has parentheses appended to it, PHP will look for
 a function with the same name as whatever the variable evaluates
 to, and will attempt to execute it. Among other things, this can
 be used to implement callbacks, function tables, and so forth.

 Variable functions won't work with language constructs such
 as echo, print,
 unset(), isset(),
 empty(), include,
 require and the like. Utilize wrapper functions to make
 use of any of these constructs as variable functions.

 Example #1 Variable function example

<?php
function foo() {
 echo "In foo()
\n";
}

function bar($arg = '')
{
 echo "In bar(); argument was '$arg'.
\n";
}

// This is a wrapper function around echo
function echoit($string)
{
 echo $string;
}

$func = 'foo';
$func(); // This calls foo()

$func = 'bar';
$func('test'); // This calls bar()

$func = 'echoit';
$func('test'); // This calls echoit()
?>

 Object methods can also be called with the variable functions syntax.

 Example #2 Variable method example

<?php
class Foo
{
 function Variable()
 {
 $name = 'Bar';
 $this->$name(); // This calls the Bar() method
 }

 function Bar()
 {
 echo "This is Bar";
 }
}

$foo = new Foo();
$funcname = "Variable";
$foo->$funcname(); // This calls $foo->Variable()

?>

 When calling static methods, the function call is stronger than the static property operator:

 Example #3 Variable method example with static properties

<?php
class Foo
{
 static $variable = 'static property';
 static function Variable()
 {
 echo 'Method Variable called';
 }
}

echo Foo::$variable; // This prints 'static property'. It does need a $variable in this scope.
$variable = "Variable";
Foo::$variable(); // This calls $foo->Variable() reading $variable in this scope.

?>

 Example #4 Complex callables

<?php
class Foo
{
 static function bar()
 {
 echo "bar\n";
 }
 function baz()
 {
 echo "baz\n";
 }
}

$func = array("Foo", "bar");
$func(); // prints "bar"
$func = array(new Foo, "baz");
$func(); // prints "baz"
$func = "Foo::bar";
$func(); // prints "bar"
?>

 See Also

 	is_callable()

 	call_user_func()

 	function_exists()

 	variable variables

 Internal (built-in) functions

 PHP comes standard with many functions and constructs. There are also
 functions that require specific PHP extensions compiled in, otherwise
 fatal "undefined function" errors will appear. For example, to use
 image functions such as
 imagecreatetruecolor(), PHP must be compiled with
 GD support. Or, to use
 mysqli_connect(), PHP must be compiled with
 MySQLi support. There are many core functions
 that are included in every version of PHP, such as the
 string and
 variable functions. A call
 to phpinfo() or
 get_loaded_extensions() will show which extensions are
 loaded into PHP. Also note that many extensions are enabled by default and
 that the PHP manual is split up by extension. See the
 configuration,
 installation, and individual
 extension chapters, for information on how to set up PHP.

 Reading and understanding a function's prototype is explained within the
 manual section titled how to read a
 function definition. It's important to realize what a function
 returns or if a function works directly on a passed in value. For example,
 str_replace() will return the modified string while
 usort() works on the actual passed in variable
 itself. Each manual page also has specific information for each
 function like information on function parameters, behavior changes,
 return values for both success and failure, and availability information.
 Knowing these important (yet often subtle) differences is crucial for
 writing correct PHP code.

 Note:

 If the parameters given to a function are not what it expects, such as
 passing an array where a string is expected,
 the return value of the function is undefined. In this case it will
 likely return null but this is just a convention, and cannot be relied
 upon.
 As of PHP 8.0.0, a TypeError exception is supposed to
 be thrown in this case.

 Note:

 Scalar types for built-in functions are nullable by default in coercive mode.
 As of PHP 8.1.0, passing null to an internal function parameter that is not declared nullable
 is discouraged and emits a deprecation notice in coercive mode to align with the behavior of user-defined functions,
 where scalar types need to be marked as nullable explicitly.

 For example, strlen() function expects the parameter $string
 to be a non-nullable string.
 For historical reasons, PHP allows passing null for this parameter in coercive mode, and the parameter is
 implicitly cast to string, resulting in a "" value.
 In contrast, a TypeError is emitted in strict mode.

<?php
var_dump(strlen(null));
// "Deprecated: Passing null to parameter #1 ($string) of type string is deprecated" as of PHP 8.1.0
// int(0)

var_dump(str_contains("foobar", null));
// "Deprecated: Passing null to parameter #2 ($needle) of type string is deprecated" as of PHP 8.1.0
// bool(true)
?>

 See Also

 	function_exists()

 	the function reference

 	get_extension_funcs()

 	dl()

 Anonymous functions

 Anonymous functions, also known as closures, allow the
 creation of functions which have no specified name. They are most useful as
 the value of callable
 parameters, but they have many other uses.

 Anonymous functions are implemented using the
 Closure class.

 Example #1 Anonymous function example

<?php
echo preg_replace_callback('~-([a-z])~', function ($match) {
 return strtoupper($match[1]);
}, 'hello-world');
// outputs helloWorld
?>

 Closures can also be used as the values of variables; PHP automatically
 converts such expressions into instances of the
 Closure internal class. Assigning a closure to a
 variable uses the same syntax as any other assignment, including the
 trailing semicolon:

 Example #2 Anonymous function variable assignment example

<?php
$greet = function($name) {
 printf("Hello %s\r\n", $name);
};

$greet('World');
$greet('PHP');
?>

 Closures may also inherit variables from the parent scope. Any such
 variables must be passed to the use language construct.
 As of PHP 7.1, these variables must not include superglobals,
 $this, or variables with the same name as a parameter.
 A return type declaration of the function has to be placed
 after the use clause.

 Example #3 Inheriting variables from the parent scope

<?php
$message = 'hello';

// No "use"
$example = function () {
 var_dump($message);
};
$example();

// Inherit $message
$example = function () use ($message) {
 var_dump($message);
};
$example();

// Inherited variable's value is from when the function
// is defined, not when called
$message = 'world';
$example();

// Reset message
$message = 'hello';

// Inherit by-reference
$example = function () use (&$message) {
 var_dump($message);
};
$example();

// The changed value in the parent scope
// is reflected inside the function call
$message = 'world';
$example();

// Closures can also accept regular arguments
$example = function ($arg) use ($message) {
 var_dump($arg . ' ' . $message);
};
$example("hello");

// Return type declaration comes after the use clause
$example = function () use ($message): string {
 return "hello $message";
};
var_dump($example());
?>

 The above example will output
something similar to:

Notice: Undefined variable: message in /example.php on line 6
NULL
string(5) "hello"
string(5) "hello"
string(5) "hello"
string(5) "world"
string(11) "hello world"
string(11) "hello world"

 As of PHP 8.0.0, the list of scope-inherited variables may include a trailing
 comma, which will be ignored.

 Inheriting variables from the parent scope is not
 the same as using global variables.
 Global variables exist in the global scope, which is the same no
 matter what function is executing. The parent scope of a closure is the
 function in which the closure was declared (not necessarily the function it
 was called from). See the following example:

 Example #4 Closures and scoping

<?php
// A basic shopping cart which contains a list of added products
// and the quantity of each product. Includes a method which
// calculates the total price of the items in the cart using a
// closure as a callback.
class Cart
{
 const PRICE_BUTTER = 1.00;
 const PRICE_MILK = 3.00;
 const PRICE_EGGS = 6.95;

 protected $products = array();

 public function add($product, $quantity)
 {
 $this->products[$product] = $quantity;
 }

 public function getQuantity($product)
 {
 return isset($this->products[$product]) ? $this->products[$product] :
 FALSE;
 }

 public function getTotal($tax)
 {
 $total = 0.00;

 $callback =
 function ($quantity, $product) use ($tax, &$total)
 {
 $pricePerItem = constant(__CLASS__ . "::PRICE_" .
 strtoupper($product));
 $total += ($pricePerItem * $quantity) * ($tax + 1.0);
 };

 array_walk($this->products, $callback);
 return round($total, 2);
 }
}

$my_cart = new Cart;

// Add some items to the cart
$my_cart->add('butter', 1);
$my_cart->add('milk', 3);
$my_cart->add('eggs', 6);

// Print the total with a 5% sales tax.
print $my_cart->getTotal(0.05) . "\n";
// The result is 54.29
?>

 Example #5 Automatic binding of $this

<?php

class Test
{
 public function testing()
 {
 return function() {
 var_dump($this);
 };
 }
}

$object = new Test;
$function = $object->testing();
$function();

?>

 The above example will output:

object(Test)#1 (0) {
}

 When declared in the context of a class, the current class is
 automatically bound to it, making $this available
 inside of the function's scope. If this automatic binding of the current
 class is not wanted, then
 static anonymous
 functions may be used instead.

 Static anonymous functions

 Anonymous functions may be declared statically. This
 prevents them from having the current class automatically bound to
 them. Objects may also not be bound to them at runtime.

 Example #6 Attempting to use $this inside a static anonymous function

<?php

class Foo
{
 function __construct()
 {
 $func = static function() {
 var_dump($this);
 };
 $func();
 }
};
new Foo();

?>

 The above example will output:

Notice: Undefined variable: this in %s on line %d
NULL

 Example #7 Attempting to bind an object to a static anonymous function

<?php

$func = static function() {
 // function body
};
$func = $func->bindTo(new stdClass);
$func();

?>

 The above example will output:

Warning: Cannot bind an instance to a static closure in %s on line %d

 Changelog

 	Version
 	Description

 	7.1.0
 	
 Anonymous functions may not close over superglobals,
 $this, or any variable with the same name as a
 parameter.

 Notes

 Note:

 It is possible to use func_num_args(),
 func_get_arg(), and func_get_args()
 from within a closure.

 Arrow Functions

 Arrow functions were introduced in PHP 7.4 as a more concise syntax for
 anonymous functions.

 Both anonymous functions and arrow functions are implemented using the
 Closure class.

 Arrow functions have the basic form
 fn (argument_list) => expr.

 Arrow functions support the same features as
 anonymous functions,
 except that using variables from the parent scope is always automatic.

 When a variable used in the expression is defined in the parent scope
 it will be implicitly captured by-value.
 In the following example, the functions $fn1 and
 $fn2 behave the same way.

 Example #1 Arrow functions capture variables by value automatically

<?php

$y = 1;

$fn1 = fn($x) => $x + $y;
// equivalent to using $y by value:
$fn2 = function ($x) use ($y) {
 return $x + $y;
};

var_export($fn1(3));
?>

 The above example will output:

4

 This also works if the arrow functions are nested:

 Example #2 Arrow functions capture variables by value automatically, even when nested

<?php

$z = 1;
$fn = fn($x) => fn($y) => $x * $y + $z;
// Outputs 51
var_export($fn(5)(10));
?>

 Similarly to anonymous functions,
 the arrow function syntax allows arbitrary function signatures,
 including parameter and return types, default values, variadics,
 as well as by-reference passing and returning.
 All of the following are valid examples of arrow functions:

 Example #3 Examples of arrow functions

<?php

fn(array $x) => $x;
static fn(): int => $x;
fn($x = 42) => $x;
fn(&$x) => $x;
fn&($x) => $x;
fn($x, ...$rest) => $rest;

?>

 Arrow functions use by-value variable binding.
 This is roughly equivalent to performing a use($x) for every
 variable $x used inside the arrow function.
 A by-value binding means that it is not possible to modify any values
 from the outer scope.
 Anonymous functions
 can be used instead for by-ref bindings.

 Example #4 Values from the outer scope cannot be modified by arrow functions

<?php

$x = 1;
$fn = fn() => $x++; // Has no effect
$fn();
var_export($x); // Outputs 1

?>

 Changelog

 	Version
 	Description

 	7.4.0
 	
 Arrow functions became available.

 Notes

 Note:

 It is possible to use func_num_args(),
 func_get_arg(), and func_get_args()
 from within an arrow function.

 First class callable syntax

 The first class callable syntax is introduced as of PHP 8.1.0, as a way of creating anonymous functions from callable.
 It supersedes existing callable syntax using strings and arrays.
 The advantage of this syntax is that it is accessible to static analysis, and uses the scope at the point where the callable is acquired.

 CallableExpr(...) syntax is used to create a Closure object from callable. CallableExpr accepts any expression that can be directly called in the PHP grammar:

 Example #1 Simple first class callable syntax

<?php

class Foo {
 public function method() {}
 public static function staticmethod() {}
 public function __invoke() {}
}

$obj = new Foo();
$classStr = 'Foo';
$methodStr = 'method';
$staticmethodStr = 'staticmethod';

$f1 = strlen(...);
$f2 = $obj(...); // invokable object
$f3 = $obj->method(...);
$f4 = $obj->$methodStr(...);
$f5 = Foo::staticmethod(...);
$f6 = $classStr::$staticmethodStr(...);

// traditional callable using string, array
$f7 = 'strlen'(...);
$f8 = [$obj, 'method'](...);
$f9 = [Foo::class, 'staticmethod'](...);
?>

 Note:

 The ... is part of the syntax, and not an omission.

 CallableExpr(...) has the same semantics as Closure::fromCallable().
 That is, unlike callable using strings and arrays, CallableExpr(...) respects the scope at the point where it is created:

 Example #2 Scope comparison of CallableExpr(...) and traditional callable

<?php

class Foo {
 public function getPrivateMethod() {
 return [$this, 'privateMethod'];
 }

 private function privateMethod() {
 echo __METHOD__, "\n";
 }
}

$foo = new Foo;
$privateMethod = $foo->getPrivateMethod();
$privateMethod();
// Fatal error: Call to private method Foo::privateMethod() from global scope
// This is because call is performed outside from Foo and visibility will be checked from this point.

class Foo1 {
 public function getPrivateMethod() {
 // Uses the scope where the callable is acquired.
 return $this->privateMethod(...); // identical to Closure::fromCallable([$this, 'privateMethod']);
 }

 private function privateMethod() {
 echo __METHOD__, "\n";
 }
}

$foo1 = new Foo1;
$privateMethod = $foo1->getPrivateMethod();
$privateMethod(); // Foo1::privateMethod
?>

 Note:

 Object creation by this syntax (e.g new Foo(...)) is not supported, because new Foo() syntax is not considered a call.

 Note:

 The first-class callable syntax cannot be combined with the nullsafe operator. Both of the following result in a compile-time error:

<?php
$obj?->method(...);
$obj?->prop->method(...);
?>

 Classes and Objects

Table of Contents
	Introduction
	The Basics
	Properties
	Class Constants
	Autoloading Classes
	Constructors and Destructors
	Visibility
	Object Inheritance
	Scope Resolution Operator (::)
	Static Keyword
	Class Abstraction
	Object Interfaces
	Traits
	Anonymous classes
	Overloading
	Object Iteration
	Magic Methods
	Final Keyword
	Object Cloning
	Comparing Objects
	Late Static Bindings
	Objects and references
	Object Serialization
	Covariance and Contravariance
	OOP Changelog

 Introduction

 PHP includes a complete object model.
 Some of its features are:
 visibility,
 abstract and
 final classes and methods,
 additional magic methods,
 interfaces, and
 cloning.

 PHP treats objects in the same way as references or handles, meaning that
 each variable contains an object reference rather than a copy of the entire
 object. See
 Objects and References

 TipSee also the
Userland Naming Guide.

 The Basics

 class

 Basic class definitions begin with the
 keyword class, followed by a class name,
 followed by a pair of curly braces which enclose the definitions
 of the properties and methods belonging to the class.

 The class name can be any valid label, provided it is not a
 PHP reserved word. A valid class
 name starts with a letter or underscore, followed by any number of
 letters, numbers, or underscores. As a regular expression, it
 would be expressed thus:
 ^[a-zA-Z_\x80-\xff][a-zA-Z0-9_\x80-\xff]*$.

 A class may contain its
 own constants, variables
 (called "properties"), and functions (called "methods").

 Example #1 Simple Class definition

<?php
class SimpleClass
{
 // property declaration
 public $var = 'a default value';

 // method declaration
 public function displayVar() {
 echo $this->var;
 }
}
?>

 The pseudo-variable $this is available when a
 method is called from within an object context.
 $this is the value of the calling object.

 Warning

 Calling a non-static method statically throws an
 Error.
 Prior to PHP 8.0.0, this would generate a deprecation notice,
 and $this would be undefined.

 Example #2 Some examples of the $this pseudo-variable

<?php
class A
{
 function foo()
 {
 if (isset($this)) {
 echo '$this is defined (';
 echo get_class($this);
 echo ")\n";
 } else {
 echo "\$this is not defined.\n";
 }
 }
}

class B
{
 function bar()
 {
 A::foo();
 }
}

$a = new A();
$a->foo();

A::foo();

$b = new B();
$b->bar();

B::bar();
?>

 Output of the above example in PHP 7:

$this is defined (A)

Deprecated: Non-static method A::foo() should not be called statically in %s on line 27
$this is not defined.

Deprecated: Non-static method A::foo() should not be called statically in %s on line 20
$this is not defined.

Deprecated: Non-static method B::bar() should not be called statically in %s on line 32

Deprecated: Non-static method A::foo() should not be called statically in %s on line 20
$this is not defined.

 Output of the above example in PHP 8:

$this is defined (A)

Fatal error: Uncaught Error: Non-static method A::foo() cannot be called statically in %s :27
Stack trace:
#0 {main}
 thrown in %s on line 27

 Readonly classes

 As of PHP 8.2.0, a class can be marked with the
 readonly modifier.
 Marking a class as readonly will add the
 readonly modifier
 to every declared property, and prevent the creation of
 dynamic properties.
 Moreover, it is impossible to add support for them by using the
 AllowDynamicProperties attribute. Attempting to do so
 will trigger a compile-time error.

<?php
#[\AllowDynamicProperties]
readonly class Foo {
}

// Fatal error: Cannot apply #[AllowDynamicProperties] to readonly class Foo
?>

 As neither untyped nor static properties can be marked with the
 readonly modifier, readonly classes cannot declare
 them either:

<?php
readonly class Foo
{
 public $bar;
}

// Fatal error: Readonly property Foo::$bar must have type
?>

<?php
readonly class Foo
{
 public static int $bar;
}

// Fatal error: Readonly class Foo cannot declare static properties
?>

 A readonly class can be
 extended
 if, and only if, the child class is also a
 readonly class.

 new

 To create an instance of a class, the new keyword must
 be used. An object will always be created unless the object has a
 constructor defined that throws an
 exception on error. Classes
 should be defined before instantiation (and in some cases this is a
 requirement).

 If a variable containing a string with the name of a class is used with
 new, a new instance of that class will be created. If
 the class is in a namespace, its fully qualified name must be used when
 doing this.

 Note:

 If there are no arguments to be passed to the class's constructor,
 parentheses after the class name may be omitted.

 Example #3 Creating an instance

<?php
$instance = new SimpleClass();

// This can also be done with a variable:
$className = 'SimpleClass';
$instance = new $className(); // new SimpleClass()
?>

 As of PHP 8.0.0, using new with arbitrary expressions
 is supported. This allows more complex instantiation if the expression
 produces a string. The expressions must be wrapped in parentheses.

 Example #4 Creating an instance using an arbitrary expression

 In the given example we show multiple examples of valid arbitrary expressions that produce a class name.
 This shows a call to a function, string concatenation, and the ::class constant.

 <?php

class ClassA extends \stdClass {}
class ClassB extends \stdClass {}
class ClassC extends ClassB {}
class ClassD extends ClassA {}

function getSomeClass(): string
{
 return 'ClassA';
}

var_dump(new (getSomeClass()));
var_dump(new ('Class' . 'B'));
var_dump(new ('Class' . 'C'));
var_dump(new (ClassD::class));
?>

 Output of the above example in PHP 8:

object(ClassA)#1 (0) {
}
object(ClassB)#1 (0) {
}
object(ClassC)#1 (0) {
}
object(ClassD)#1 (0) {
}

 In the class context, it is possible to create a new object by
 new self and new parent.

 When assigning an already created instance of a class to a new variable, the new variable
 will access the same instance as the object that was assigned. This
 behaviour is the same when passing instances to a function. A copy
 of an already created object can be made by
 cloning it.

 Example #5 Object Assignment

<?php

$instance = new SimpleClass();

$assigned = $instance;
$reference =& $instance;

$instance->var = '$assigned will have this value';

$instance = null; // $instance and $reference become null

var_dump($instance);
var_dump($reference);
var_dump($assigned);
?>

 The above example will output:

NULL
NULL
object(SimpleClass)#1 (1) {
 ["var"]=>
 string(30) "$assigned will have this value"
}

 It's possible to create instances of an object in a couple of ways:

 Example #6 Creating new objects

<?php

class Test
{
 public static function getNew()
 {
 return new static();
 }
}

class Child extends Test {}

$obj1 = new Test(); // By the class name
$obj2 = new $obj1(); // Through the variable containing an object
var_dump($obj1 !== $obj2);

$obj3 = Test::getNew(); // By the class method
var_dump($obj3 instanceof Test);

$obj4 = Child::getNew(); // Through a child class method
var_dump($obj4 instanceof Child);

?>

 The above example will output:

bool(true)
bool(true)
bool(true)

 It is possible to access a member of a newly created object
 in a single expression:

 Example #7 Access member of newly created object

<?php
echo (new DateTime())->format('Y');
?>

 The above example will output
something similar to:

2016

 Note:

 Prior to PHP 7.1, the arguments are not evaluated if there is no constructor
 function defined.

 Properties and methods

 Class properties and methods live in separate "namespaces", so it is
 possible to have a property and a method with the same name. Referring to
 both a property and a method has the same notation, and whether a property
 will be accessed or a method will be called, solely depends on the context,
 i.e. whether the usage is a variable access or a function call.

 Example #8 Property access vs. method call

<?php
class Foo
{
 public $bar = 'property';

 public function bar() {
 return 'method';
 }
}

$obj = new Foo();
echo $obj->bar, PHP_EOL, $obj->bar(), PHP_EOL;

 The above example will output:

property
method

 That means that calling an anonymous
 function which has been assigned to a property is not directly
 possible. Instead the property has to be assigned to a variable first, for
 instance. It is possible to call such a property directly
 by enclosing it in parentheses.

 Example #9 Calling an anonymous function stored in a property

<?php
class Foo
{
 public $bar;

 public function __construct() {
 $this->bar = function() {
 return 42;
 };
 }
}

$obj = new Foo();

echo ($obj->bar)(), PHP_EOL;

 The above example will output:

42

 extends

 A class can inherit the constants, methods, and properties of another class by
 using the keyword extends in the class
 declaration. It is not possible to extend multiple classes; a
 class can only inherit from one base class.

 The inherited constants, methods, and properties can be overridden by
 redeclaring them with the same name defined in the parent
 class. However, if the parent class has defined a method or constant
 as final,
 they may not be overridden. It is possible to access the overridden
 methods or static properties by referencing them
 with parent::.

 Note:

 As of PHP 8.1.0, constants may be declared as final.

 Example #10 Simple Class Inheritance

<?php
class ExtendClass extends SimpleClass
{
 // Redefine the parent method
 function displayVar()
 {
 echo "Extending class\n";
 parent::displayVar();
 }
}

$extended = new ExtendClass();
$extended->displayVar();
?>

 The above example will output:

Extending class
a default value

 Signature compatibility rules

 When overriding a method, its signature must be compatible with the parent
 method. Otherwise, a fatal error is emitted, or, prior to PHP 8.0.0, an
 E_WARNING level error is generated.
 A signature is compatible if it respects the
 variance rules, makes a
 mandatory parameter optional, adds only optional new parameters and
 doesn't restrict but only relaxes the visibility.
 This is known as the Liskov Substitution Principle, or LSP for short.
 The constructor,
 and private methods are exempt from these signature
 compatibility rules, and thus won't emit a fatal error in case of a
 signature mismatch.

 Example #11 Compatible child methods

<?php

class Base
{
 public function foo(int $a) {
 echo "Valid\n";
 }
}

class Extend1 extends Base
{
 function foo(int $a = 5)
 {
 parent::foo($a);
 }
}

class Extend2 extends Base
{
 function foo(int $a, $b = 5)
 {
 parent::foo($a);
 }
}

$extended1 = new Extend1();
$extended1->foo();
$extended2 = new Extend2();
$extended2->foo(1);

 The above example will output:

Valid
Valid

 The following examples demonstrate that a child method which removes a parameter, or makes an optional
 parameter mandatory, is not compatible with the parent method.

 Example #12 Fatal error when a child method removes a parameter

<?php

class Base
{
 public function foo(int $a = 5) {
 echo "Valid\n";
 }
}

class Extend extends Base
{
 function foo()
 {
 parent::foo(1);
 }
}

 Output of the above example in PHP 8 is similar to:

Fatal error: Declaration of Extend::foo() must be compatible with Base::foo(int $a = 5) in /in/evtlq on line 13

 Example #13 Fatal error when a child method makes an optional parameter mandatory

<?php

class Base
{
 public function foo(int $a = 5) {
 echo "Valid\n";
 }
}

class Extend extends Base
{
 function foo(int $a)
 {
 parent::foo($a);
 }
}

 Output of the above example in PHP 8 is similar to:

Fatal error: Declaration of Extend::foo(int $a) must be compatible with Base::foo(int $a = 5) in /in/qJXVC on line 13

 Warning

 Renaming a method's parameter in a child class is not a signature
 incompatibility. However, this is discouraged as it will result in a
 runtime Error if
 named arguments
 are used.

 Example #14 Error when using named arguments and parameters were renamed in a child class

<?php

class A {
 public function test($foo, $bar) {}
}

class B extends A {
 public function test($a, $b) {}
}

$obj = new B;

// Pass parameters according to A::test() contract
$obj->test(foo: "foo", bar: "bar"); // ERROR!

 The above example will output
something similar to:

Fatal error: Uncaught Error: Unknown named parameter $foo in /in/XaaeN:14
Stack trace:
#0 {main}
 thrown in /in/XaaeN on line 14

 ::class

 The class keyword is also used for class
 name resolution.
 To obtain the fully qualified name of a class ClassName
 use ClassName::class. This is particularly useful with
 namespaced classes.

 Example #15 Class name resolution

<?php
namespace NS {
 class ClassName {
 }

 echo ClassName::class;
}
?>

 The above example will output:

NS\ClassName

 Note:
 The class name resolution using ::class is a
 compile time transformation. That means at the time the class name string
 is created no autoloading has happened yet. As a consequence, class names
 are expanded even if the class does not exist. No error is issued in
 that case.

 Example #16 Missing class name resolution

<?php
print Does\Not\Exist::class;
?>

 The above example will output:

Does\Not\Exist

 As of PHP 8.0.0, ::class may also be used on
 objects. This resolution happens at runtime, not compile time. Its effect is
 the same as calling get_class() on the object.

 Example #17 Object name resolution

<?php
namespace NS {
 class ClassName {
 }
}
$c = new ClassName();
print $c::class;
?>

 The above example will output:

NS\ClassName

 Nullsafe methods and properties

 As of PHP 8.0.0, properties and methods may also be accessed with the
 "nullsafe" operator instead: ?->. The nullsafe operator
 works the same as property or method access as above, except that if the
 object being dereferenced is null then null
 will be returned rather than an exception thrown. If the dereference is part of a
 chain, the rest of the chain is skipped.

 The effect is similar to wrapping each access in an is_null()
 check first, but more compact.

 Example #18 Nullsafe Operator

<?php

// As of PHP 8.0.0, this line:
$result = $repository?->getUser(5)?->name;

// Is equivalent to the following code block:
if (is_null($repository)) {
 $result = null;
} else {
 $user = $repository->getUser(5);
 if (is_null($user)) {
 $result = null;
 } else {
 $result = $user->name;
 }
}
?>

 Note:

 The nullsafe operator is best used when null is considered a valid and expected
 possible value for a property or method return. For indicating an error,
 a thrown exception is preferable.

 Properties

 Class member variables are called properties.
 They may be referred to using other terms such as fields,
 but for the purposes of this reference properties
 will be used. They are defined by using at least one modifier (such as
 Visibility,
 Static Keyword,
 or, as of PHP 8.1.0, readonly),
 optionally (except for readonly properties), as of PHP 7.4,
 followed by a type declaration, followed by a normal variable declaration.
 This declaration may include an initialization, but this initialization
 must be a constant value.

 Note:

 An obsolete way of declaring class properties, is by using the
 var keyword instead of a modifier.

 Note:

 A property declared without a Visibility
 modifier will be declared as public.

 Within class methods non-static properties may be accessed by using
 -> (Object Operator): $this->property
 (where property is the name of the property).
 Static properties are accessed by using the :: (Double Colon):
 self::$property. See Static Keyword
 for more information on the difference between static and non-static properties.

 The pseudo-variable $this is available inside
 any class method when that method is called from within an object context.
 $this is the value of the calling object.

 Example #1 Property declarations

<?php
class SimpleClass
{
 public $var1 = 'hello ' . 'world';
 public $var2 = <<<EOD
hello world
EOD;
 public $var3 = 1+2;
 // invalid property declarations:
 public $var4 = self::myStaticMethod();
 public $var5 = $myVar;

 // valid property declarations:
 public $var6 = myConstant;
 public $var7 = [true, false];

 public $var8 = <<<'EOD'
hello world
EOD;

 // Without visibility modifier:
 static $var9;
 readonly int $var10;
}
?>

 Note:

 There are various functions to handle classes and objects.
 See the Class/Object Functions
 reference.

 Type declarations

 As of PHP 7.4.0, property definitions can include
 Type declarations,
 with the exception of callable.

 Example #2 Example of typed properties

<?php

class User
{
 public int $id;
 public ?string $name;

 public function __construct(int $id, ?string $name)
 {
 $this->id = $id;
 $this->name = $name;
 }
}

$user = new User(1234, null);

var_dump($user->id);
var_dump($user->name);

?>

 The above example will output:

int(1234)
NULL

 Typed properties must be initialized before accessing, otherwise an
 Error is thrown.

 Example #3 Accessing properties

<?php

class Shape
{
 public int $numberOfSides;
 public string $name;

 public function setNumberOfSides(int $numberOfSides): void
 {
 $this->numberOfSides = $numberOfSides;
 }

 public function setName(string $name): void
 {
 $this->name = $name;
 }

 public function getNumberOfSides(): int
 {
 return $this->numberOfSides;
 }

 public function getName(): string
 {
 return $this->name;
 }
}

$triangle = new Shape();
$triangle->setName("triangle");
$triangle->setNumberofSides(3);
var_dump($triangle->getName());
var_dump($triangle->getNumberOfSides());

$circle = new Shape();
$circle->setName("circle");
var_dump($circle->getName());
var_dump($circle->getNumberOfSides());
?>

 The above example will output:

string(8) "triangle"
int(3)
string(6) "circle"

Fatal error: Uncaught Error: Typed property Shape::$numberOfSides must not be accessed before initialization

 Readonly properties

 As of PHP 8.1.0, a property can be declared with the readonly modifier, which prevents modification of the property after initialization.

 Example #4 Example of readonly properties

<?php

class Test {
 public readonly string $prop;

 public function __construct(string $prop) {
 // Legal initialization.
 $this->prop = $prop;
 }
}

$test = new Test("foobar");
// Legal read.
var_dump($test->prop); // string(6) "foobar"

// Illegal reassignment. It does not matter that the assigned value is the same.
$test->prop = "foobar";
// Error: Cannot modify readonly property Test::$prop
?>

 Note:

 The readonly modifier can only be applied to typed properties.
 A readonly property without type constraints can be created using the Mixed type.

 Note:

 Readonly static properties are not supported.

 A readonly property can only be initialized once, and only from the scope where it has been declared. Any other assignment or modification of the property will result in an Error exception.

 Example #5 Illegal initialization of readonly properties

<?php
class Test1 {
 public readonly string $prop;
}

$test1 = new Test1;
// Illegal initialization outside of private scope.
$test1->prop = "foobar";
// Error: Cannot initialize readonly property Test1::$prop from global scope
?>

 Note:

 Specifying an explicit default value on readonly properties is not allowed, because a readonly property with a default value is essentially the same as a constant, and thus not particularly useful.

<?php

class Test {
 // Fatal error: Readonly property Test::$prop cannot have default value
 public readonly int $prop = 42;
}
?>

 Note:

 Readonly properties cannot be unset() once they are initialized. However, it is possible to unset a readonly property prior to initialization, from the scope where the property has been declared.

 Modifications are not necessarily plain assignments, all of the following will also result in an Error exception:

<?php

class Test {
 public function __construct(
 public readonly int $i = 0,
 public readonly array $ary = [],
) {}
}

$test = new Test;
$test->i += 1;
$test->i++;
++$test->i;
$test->ary[] = 1;
$test->ary[0][] = 1;
$ref =& $test->i;
$test->i =& $ref;
byRef($test->i);
foreach ($test as &$prop);
?>

 However, readonly properties do not preclude interior mutability. Objects (or resources) stored in readonly properties may still be modified internally:

<?php

class Test {
 public function __construct(public readonly object $obj) {}
}

$test = new Test(new stdClass);
// Legal interior mutation.
$test->obj->foo = 1;
// Illegal reassignment.
$test->obj = new stdClass;
?>

 Dynamic properties

 If trying to assign to a non-existent property on an object,
 PHP will automatically create a corresponding property.
 This dynamically created property will only be
 available on this class instance.

 Warning

 Dynamic properties are deprecated as of PHP 8.2.0.
 It is recommended to declare the property instead.
 To handle arbitrary property names, the class should implement the magic
 methods __get() and
 __set().
 At last resort the class can be marked with the
 #[\AllowDynamicProperties] attribute.

 Class Constants

 It is possible to define constants
 on a per-class basis remaining the same and unchangeable.
 The default visibility of class constants is public.

 Note:

 Class constants can be redefined by a child class.
 As of PHP 8.1.0, class constants cannot be redefined by a child class
 if it is defined as final.

 It's also possible for interfaces to have constants. Look
 at the interface documentation
 for examples.

 It's possible to reference the class using a variable.
 The variable's value can not be a keyword (e.g. self,
 parent and static).

 Note that class constants are allocated once per class, and not for each
 class instance.

 Example #1 Defining and using a constant

<?php
class MyClass
{
 const CONSTANT = 'constant value';

 function showConstant() {
 echo self::CONSTANT . "\n";
 }
}

echo MyClass::CONSTANT . "\n";

$classname = "MyClass";
echo $classname::CONSTANT . "\n";

$class = new MyClass();
$class->showConstant();

echo $class::CONSTANT."\n";
?>

 The special ::class constant allows
 for fully qualified class name resolution at compile time,
 this is useful for namespaced classes:

 Example #2 Namespaced ::class example

<?php
namespace foo {
 class bar {
 }

 echo bar::class; // foo\bar
}
?>

 Example #3 Class constant expression example

<?php
const ONE = 1;
class foo {
 const TWO = ONE * 2;
 const THREE = ONE + self::TWO;
 const SENTENCE = 'The value of THREE is '.self::THREE;
}
?>

 Example #4 Class constant visibility modifiers, as of PHP 7.1.0

<?php
class Foo {
 public const BAR = 'bar';
 private const BAZ = 'baz';
}
echo Foo::BAR, PHP_EOL;
echo Foo::BAZ, PHP_EOL;
?>

 Output of the above example in PHP 7.1:

bar

Fatal error: Uncaught Error: Cannot access private const Foo::BAZ in …

 Note:

 As of PHP 7.1.0 visibility modifiers are allowed for class constants.

 Autoloading Classes

 Many developers writing object-oriented applications create
 one PHP source file per class definition. One of the biggest
 annoyances is having to write a long list of needed includes
 at the beginning of each script (one for each class).

 The spl_autoload_register() function registers any number of
 autoloaders, enabling for classes and interfaces to be automatically loaded
 if they are currently not defined. By registering autoloaders, PHP is given
 a last chance to load the class or interface before it fails with an error.

 Any class-like construct may be autoloaded the same way. That includes classes,
 interfaces, traits, and enumerations.

 Caution

 Prior to PHP 8.0.0, it was possible to use __autoload()
 to autoload classes and interfaces. However, it is a less flexible
 alternative to spl_autoload_register() and
 __autoload() is deprecated as of PHP 7.2.0, and removed
 as of PHP 8.0.0.

 Note:

 spl_autoload_register() may be called multiple times in order
 to register multiple autoloaders. Throwing an exception from an autoload function,
 however, will interrupt that process and not allow further autoload functions to
 run. For that reason, throwing exceptions from an autoload function is strongly
 discouraged.

 Example #1 Autoload example

 This example attempts to load the classes MyClass1
 and MyClass2 from the files MyClass1.php
 and MyClass2.php respectively.

<?php
spl_autoload_register(function ($class_name) {
 include $class_name . '.php';
});

$obj = new MyClass1();
$obj2 = new MyClass2();
?>

 Example #2 Autoload other example

 This example attempts to load the interface ITest.

<?php

spl_autoload_register(function ($name) {
 var_dump($name);
});

class Foo implements ITest {
}

/*
string(5) "ITest"

Fatal error: Interface 'ITest' not found in ...
*/
?>

 See Also

 	unserialize()

 	unserialize_callback_func

 	unserialize_max_depth

 	spl_autoload_register()

 	spl_autoload()

 	__autoload()

 Constructors and Destructors

 Constructor

 __construct(mixed ...$values = ""): void

 PHP allows developers to declare constructor methods for classes.
 Classes which have a constructor method call this method on each
 newly-created object, so it is suitable for any initialization that the
 object may need before it is used.

 Note:

 Parent constructors are not called implicitly if the child class defines
 a constructor. In order to run a parent constructor, a call to
 parent::__construct() within the child constructor is
 required. If the child does not define a constructor then it may be inherited
 from the parent class just like a normal class method (if it was not declared
 as private).

 Example #1 Constructors in inheritance

<?php
class BaseClass {
 function __construct() {
 print "In BaseClass constructor\n";
 }
}

class SubClass extends BaseClass {
 function __construct() {
 parent::__construct();
 print "In SubClass constructor\n";
 }
}

class OtherSubClass extends BaseClass {
 // inherits BaseClass's constructor
}

// In BaseClass constructor
$obj = new BaseClass();

// In BaseClass constructor
// In SubClass constructor
$obj = new SubClass();

// In BaseClass constructor
$obj = new OtherSubClass();
?>

 Unlike other methods, __construct()
 is exempt from the usual
 signature compatibility rules
 when being extended.

 Constructors are ordinary methods which are called during the instantiation of their
 corresponding object. As such, they may define an arbitrary number of arguments, which
 may be required, may have a type, and may have a default value. Constructor arguments
 are called by placing the arguments in parentheses after the class name.

 Example #2 Using constructor arguments

<?php
class Point {
 protected int $x;
 protected int $y;

 public function __construct(int $x, int $y = 0) {
 $this->x = $x;
 $this->y = $y;
 }
}

// Pass both parameters.
$p1 = new Point(4, 5);
// Pass only the required parameter. $y will take its default value of 0.
$p2 = new Point(4);
// With named parameters (as of PHP 8.0):
$p3 = new Point(y: 5, x: 4);
?>

 If a class has no constructor, or the constructor has no required arguments, the parentheses
 may be omitted.

 Old-style constructors

 Prior to PHP 8.0.0, classes in the global namespace will interpret a method named
 the same as the class as an old-style constructor. That syntax is deprecated,
 and will result in an E_DEPRECATED error but still call that function as a constructor.
 If both __construct() and a same-name method are
 defined, __construct() will be called.

 In namespaced classes, or any class as of PHP 8.0.0, a method named
 the same as the class never has any special meaning.

 Always use __construct() in new code.

 Constructor Promotion

 As of PHP 8.0.0, constructor parameters may also be promoted to correspond to an
 object property. It is very common for constructor parameters to be assigned to
 a property in the constructor but otherwise not operated upon. Constructor promotion
 provides a short-hand for that use case. The example above could be rewritten as the following.

 Example #3 Using constructor property promotion

<?php
class Point {
 public function __construct(protected int $x, protected int $y = 0) {
 }
}

 When a constructor argument includes a modifier, PHP will interpret it as
 both an object property and a constructor argument, and assign the argument value to
 the property. The constructor body may then be empty or may contain other statements.
 Any additional statements will be executed after the argument values have been assigned
 to the corresponding properties.

 Not all arguments need to be promoted. It is possible to mix and match promoted and not-promoted
 arguments, in any order. Promoted arguments have no impact on code calling the constructor.

 Note:

 Using a visibility modifier (public,
 protected or private) is the most likely way to apply property
 promotion, but any other single modifier (such as readonly) will have the same effect.

 Note:

 Object properties may not be typed callable due to engine ambiguity that would
 introduce. Promoted arguments, therefore, may not be typed callable either. Any
 other type declaration is permitted, however.

 Note:

 As promoted properties are desugared to both a property as well as a function parameter, any
 and all naming restrictions for both properties as well as parameters apply.

 Note:

 Attributes placed on a
 promoted constructor argument will be replicated to both the property
 and argument. Default values on a promoted constructor argument will be replicated only to the argument and not the property.

 New in initializers

 As of PHP 8.1.0, objects can be used as default parameter values,
 static variables, and global constants, as well as in attribute arguments.
 Objects can also be passed to define() now.

 Note:

 The use of a dynamic or non-string class name or an anonymous class is not allowed.
 The use of argument unpacking is not allowed.
 The use of unsupported expressions as arguments is not allowed.

 Example #4 Using new in initializers

<?php

// All allowed:
static $x = new Foo;

const C = new Foo;

function test($param = new Foo) {}

#[AnAttribute(new Foo)]
class Test {
 public function __construct(
 public $prop = new Foo,
) {}
}

// All not allowed (compile-time error):
function test(
 $a = new (CLASS_NAME_CONSTANT)(), // dynamic class name
 $b = new class {}, // anonymous class
 $c = new A(...[]), // argument unpacking
 $d = new B($abc), // unsupported constant expression
) {}
?>

 Static creation methods

 PHP only supports a single constructor per class. In some cases, however, it may be
 desirable to allow an object to be constructed in different ways with different inputs.
 The recommended way to do so is by using static methods as constructor wrappers.

 Example #5 Using static creation methods

<?php
class Product {

 private ?int $id;
 private ?string $name;

 private function __construct(?int $id = null, ?string $name = null) {
 $this->id = $id;
 $this->name = $name;
 }

 public static function fromBasicData(int $id, string $name): static {
 $new = new static($id, $name);
 return $new;
 }

 public static function fromJson(string $json): static {
 $data = json_decode($json, true);
 return new static($data['id'], $data['name']);
 }

 public static function fromXml(string $xml): static {
 // Custom logic here.
 $data = convert_xml_to_array($xml);
 $new = new static();
 $new->id = $data['id'];
 $new->name = $data['name'];
 return $new;
 }
}

$p1 = Product::fromBasicData(5, 'Widget');
$p2 = Product::fromJson($some_json_string);
$p3 = Product::fromXml($some_xml_string);

 The constructor may be made private or protected to prevent it from being called externally.
 If so, only a static method will be able to instantiate the class. Because they are in the
 same class definition they have access to private methods, even if not of the same object
 instance. The private constructor is optional and may or may not make sense depending on
 the use case.

 The three public static methods then demonstrate different ways of instantiating the object.

 	fromBasicData() takes the exact parameters that are needed, then creates the
 object by calling the constructor and returning the result.

 	fromJson() accepts a JSON string and does some pre-processing on it itself
 to convert it into the format desired by the constructor. It then returns the new object.

 	fromXml() accepts an XML string, preprocesses it, and then creates a bare
 object. The constructor is still called, but as all of the parameters are optional the method
 skips them. It then assigns values to the object properties directly before returning the result.

 In all three cases, the static keyword is translated into the name of the class the code is in.
 In this case, Product.

 Destructor

 __destruct(): void

 PHP possesses a destructor concept similar to that of other
 object-oriented languages, such as C++. The destructor method will be
 called as soon as there are no other references to a particular object,
 or in any order during the shutdown sequence.

 Example #6 Destructor Example

<?php

class MyDestructableClass
{
 function __construct() {
 print "In constructor\n";
 }

 function __destruct() {
 print "Destroying " . __CLASS__ . "\n";
 }
}

$obj = new MyDestructableClass();

 Like constructors, parent destructors will not be called implicitly by
 the engine. In order to run a parent destructor, one would have to
 explicitly call parent::__destruct() in the destructor
 body. Also like constructors, a child class may inherit the parent's
 destructor if it does not implement one itself.

 The destructor will be called even if script execution is stopped using
 exit(). Calling exit() in a destructor
 will prevent the remaining shutdown routines from executing.

 Note:

 Destructors called during the script shutdown have HTTP headers already
 sent. The working directory in the script shutdown phase can be different
 with some SAPIs (e.g. Apache).

 Note:

 Attempting to throw an exception from a destructor (called in the time of
 script termination) causes a fatal error.

 Visibility

 The visibility of a property, a method or (as of PHP 7.1.0) a constant can be defined by prefixing
 the declaration with the keywords public,
 protected or
 private. Class members declared public can be
 accessed everywhere. Members declared protected can be accessed
 only within the class itself and by inheriting and parent
 classes. Members declared as private may only be accessed by the
 class that defines the member.

 Property Visibility

 Class properties may be defined as public, private, or
 protected. Properties declared without any explicit visibility
 keyword are defined as public.

 Example #1 Property declaration

<?php
/**
 * Define MyClass
 */
class MyClass
{
 public $public = 'Public';
 protected $protected = 'Protected';
 private $private = 'Private';

 function printHello()
 {
 echo $this->public;
 echo $this->protected;
 echo $this->private;
 }
}

$obj = new MyClass();
echo $obj->public; // Works
echo $obj->protected; // Fatal Error
echo $obj->private; // Fatal Error
$obj->printHello(); // Shows Public, Protected and Private

/**
 * Define MyClass2
 */
class MyClass2 extends MyClass
{
 // We can redeclare the public and protected properties, but not private
 public $public = 'Public2';
 protected $protected = 'Protected2';

 function printHello()
 {
 echo $this->public;
 echo $this->protected;
 echo $this->private;
 }
}

$obj2 = new MyClass2();
echo $obj2->public; // Works
echo $obj2->protected; // Fatal Error
echo $obj2->private; // Undefined
$obj2->printHello(); // Shows Public2, Protected2, Undefined

?>

 Method Visibility

 Class methods may be defined as public, private, or
 protected. Methods declared without any explicit visibility
 keyword are defined as public.

 Example #2 Method Declaration

<?php
/**
 * Define MyClass
 */
class MyClass
{
 // Declare a public constructor
 public function __construct() { }

 // Declare a public method
 public function MyPublic() { }

 // Declare a protected method
 protected function MyProtected() { }

 // Declare a private method
 private function MyPrivate() { }

 // This is public
 function Foo()
 {
 $this->MyPublic();
 $this->MyProtected();
 $this->MyPrivate();
 }
}

$myclass = new MyClass;
$myclass->MyPublic(); // Works
$myclass->MyProtected(); // Fatal Error
$myclass->MyPrivate(); // Fatal Error
$myclass->Foo(); // Public, Protected and Private work

/**
 * Define MyClass2
 */
class MyClass2 extends MyClass
{
 // This is public
 function Foo2()
 {
 $this->MyPublic();
 $this->MyProtected();
 $this->MyPrivate(); // Fatal Error
 }
}

$myclass2 = new MyClass2;
$myclass2->MyPublic(); // Works
$myclass2->Foo2(); // Public and Protected work, not Private

class Bar
{
 public function test() {
 $this->testPrivate();
 $this->testPublic();
 }

 public function testPublic() {
 echo "Bar::testPublic\n";
 }

 private function testPrivate() {
 echo "Bar::testPrivate\n";
 }
}

class Foo extends Bar
{
 public function testPublic() {
 echo "Foo::testPublic\n";
 }

 private function testPrivate() {
 echo "Foo::testPrivate\n";
 }
}

$myFoo = new Foo();
$myFoo->test(); // Bar::testPrivate
 // Foo::testPublic
?>

 Constant Visibility

 As of PHP 7.1.0, class constants may be defined as public, private, or
 protected. Constants declared without any explicit visibility
 keyword are defined as public.

 Example #3 Constant Declaration as of PHP 7.1.0

<?php
/**
 * Define MyClass
 */
class MyClass
{
 // Declare a public constant
 public const MY_PUBLIC = 'public';

 // Declare a protected constant
 protected const MY_PROTECTED = 'protected';

 // Declare a private constant
 private const MY_PRIVATE = 'private';

 public function foo()
 {
 echo self::MY_PUBLIC;
 echo self::MY_PROTECTED;
 echo self::MY_PRIVATE;
 }
}

$myclass = new MyClass();
MyClass::MY_PUBLIC; // Works
MyClass::MY_PROTECTED; // Fatal Error
MyClass::MY_PRIVATE; // Fatal Error
$myclass->foo(); // Public, Protected and Private work

/**
 * Define MyClass2
 */
class MyClass2 extends MyClass
{
 // This is public
 function foo2()
 {
 echo self::MY_PUBLIC;
 echo self::MY_PROTECTED;
 echo self::MY_PRIVATE; // Fatal Error
 }
}

$myclass2 = new MyClass2;
echo MyClass2::MY_PUBLIC; // Works
$myclass2->foo2(); // Public and Protected work, not Private
?>

 Visibility from other objects

 Objects of the same type will have access to each others private and
 protected members even though they are not the same instances. This is
 because the implementation specific details are already known when inside
 those objects.

 Example #4 Accessing private members of the same object type

<?php
class Test
{
 private $foo;

 public function __construct($foo)
 {
 $this->foo = $foo;
 }

 private function bar()
 {
 echo 'Accessed the private method.';
 }

 public function baz(Test $other)
 {
 // We can change the private property:
 $other->foo = 'hello';
 var_dump($other->foo);

 // We can also call the private method:
 $other->bar();
 }
}

$test = new Test('test');

$test->baz(new Test('other'));
?>

 The above example will output:

string(5) "hello"
Accessed the private method.

 Object Inheritance

 Inheritance is a well-established programming principle, and PHP makes use
 of this principle in its object model. This principle will affect the way
 many classes and objects relate to one another.

 For example, when extending a class, the subclass inherits all of the
 public and protected methods, properties and constants from the parent class.
 Unless a class overrides
 those methods, they will retain their original functionality.

 This is useful for defining and abstracting functionality, and permits the
 implementation of additional functionality in similar objects without the
 need to reimplement all of the shared functionality.

 Private methods of a parent class are not accessible to a child class. As a result,
 child classes may reimplement a private method themselves without regard for normal
 inheritance rules. Prior to PHP 8.0.0, however, final and static
 restrictions were applied to private methods. As of PHP 8.0.0, the only private method
 restriction that is enforced is private final constructors, as that
 is a common way to "disable" the constructor when using static factory methods instead.

 The visibility
 of methods, properties and constants can be relaxed, e.g. a
 protected method can be marked as
 public, but they cannot be restricted, e.g.
 marking a public property as private.
 An exception are constructors, whose visibility can be restricted, e.g.
 a public constructor can be marked as private
 in a child class.

 Note:

 Unless autoloading is used, the classes must be defined before they are
 used. If a class extends another, then the parent class must be declared
 before the child class structure. This rule applies to classes that inherit
 other classes and interfaces.

 Note:

 It is not allowed to override a read-write property with a readonly property or vice versa.

<?php

class A {
 public int $prop;
}
class B extends A {
 // Illegal: read-write -> readonly
 public readonly int $prop;
}
?>

 Example #1 Inheritance Example

<?php

class Foo
{
 public function printItem($string)
 {
 echo 'Foo: ' . $string . PHP_EOL;
 }

 public function printPHP()
 {
 echo 'PHP is great.' . PHP_EOL;
 }
}

class Bar extends Foo
{
 public function printItem($string)
 {
 echo 'Bar: ' . $string . PHP_EOL;
 }
}

$foo = new Foo();
$bar = new Bar();
$foo->printItem('baz'); // Output: 'Foo: baz'
$foo->printPHP(); // Output: 'PHP is great'
$bar->printItem('baz'); // Output: 'Bar: baz'
$bar->printPHP(); // Output: 'PHP is great'

?>

 Return Type Compatibility with Internal Classes

 Prior to PHP 8.1, most internal classes or methods didn't declare their return types,
 and any return type was allowed when extending them.

 As of PHP 8.1.0, most internal methods started to "tentatively" declare their return type,
 in that case the return type of methods should be compatible with the parent being extended;
 otherwise, a deprecation notice is emitted.
 Note that lack of an explicit return declaration is also considered a signature mismatch,
 and thus results in the deprecation notice.

 If the return type cannot be declared for an overriding method due to PHP cross-version compatibility concerns,
 a ReturnTypeWillChange attribute can be added to silence the deprecation notice.

 Example #2 The overriding method does not declare any return type

<?php
class MyDateTime extends DateTime
{
 public function modify(string $modifier) { return false; }
}

// "Deprecated: Return type of MyDateTime::modify(string $modifier) should either be compatible with DateTime::modify(string $modifier): DateTime|false, or the #[\ReturnTypeWillChange] attribute should be used to temporarily suppress the notice" as of PHP 8.1.0
?>

 Example #3 The overriding method declares a wrong return type

<?php
class MyDateTime extends DateTime
{
 public function modify(string $modifier): ?DateTime { return null; }
}

// "Deprecated: Return type of MyDateTime::modify(string $modifier): ?DateTime should either be compatible with DateTime::modify(string $modifier): DateTime|false, or the #[\ReturnTypeWillChange] attribute should be used to temporarily suppress the notice" as of PHP 8.1.0
?>

 Example #4 The overriding method declares a wrong return type without a deprecation notice

<?php
class MyDateTime extends DateTime
{
 /**
 * @return DateTime|false
 */
 #[\ReturnTypeWillChange]
 public function modify(string $modifier) { return false; }
}

// No notice is triggered
?>

 Scope Resolution Operator (::)

 The Scope Resolution Operator (also called Paamayim Nekudotayim) or in
 simpler terms, the double colon, is a token that allows access to
 a constant,
 static property,
 or static method
 of a class or one of its parents.
 Moreover, static properties or methods can be overriden via
 late static binding.

 When referencing these items from outside the class definition, use
 the name of the class.

 It's possible to reference the class using a variable.
 The variable's value can not be a keyword (e.g. self,
 parent and static).

 Paamayim Nekudotayim would, at first, seem like a strange choice for
 naming a double-colon. However, while writing the Zend Engine 0.5
 (which powers PHP 3), that's what the Zend team decided to call it.
 It actually does mean double-colon - in Hebrew!

 Example #1 :: from outside the class definition

<?php
class MyClass {
 const CONST_VALUE = 'A constant value';
}

$classname = 'MyClass';
echo $classname::CONST_VALUE;

echo MyClass::CONST_VALUE;
?>

 Three special keywords self, parent and
 static are used to access properties or methods from inside
 the class definition.

 Example #2 :: from inside the class definition

<?php
class OtherClass extends MyClass
{
 public static $my_static = 'static var';

 public static function doubleColon() {
 echo parent::CONST_VALUE . "\n";
 echo self::$my_static . "\n";
 }
}

$classname = 'OtherClass';
$classname::doubleColon();

OtherClass::doubleColon();
?>

 When an extending class overrides the parent's definition of a method,
 PHP will not call the parent's method. It's up to the extended class
 on whether or not the parent's method is called. This also applies to Constructors and Destructors, Overloading, and Magic method definitions.

 Example #3 Calling a parent's method

<?php
class MyClass
{
 protected function myFunc() {
 echo "MyClass::myFunc()\n";
 }
}

class OtherClass extends MyClass
{
 // Override parent's definition
 public function myFunc()
 {
 // But still call the parent function
 parent::myFunc();
 echo "OtherClass::myFunc()\n";
 }
}

$class = new OtherClass();
$class->myFunc();
?>

 See also some examples of
 static call trickery.

 Static Keyword

 Tip

 This page describes the use of the static keyword to
 define static methods and properties. static can also
 be used to
 define static variables,
 define static anonymous functions
 and for
 late static bindings.
 Please refer to those pages for information on those meanings of
 static.

 Declaring class properties or methods as static makes them accessible
 without needing an instantiation of the class.
 These can also be accessed statically within an instantiated class object.

 Static methods

 Because static methods are callable without an instance of
 the object created, the pseudo-variable $this is
 not available inside methods declared as static.

 Warning

 Calling non-static methods statically throws an Error.

 Prior to PHP 8.0.0, calling non-static methods statically were deprecated, and
 generated an E_DEPRECATED warning.

 Example #1 Static method example

<?php
class Foo {
 public static function aStaticMethod() {
 // ...
 }
}

Foo::aStaticMethod();
$classname = 'Foo';
$classname::aStaticMethod();
?>

 Static properties

 Static properties are accessed using the
 Scope Resolution Operator
 (::) and cannot be accessed through the object operator
 (->).

 It's possible to reference the class using a variable.
 The variable's value cannot be a keyword (e.g. self,
 parent and static).

 Example #2 Static property example

<?php
class Foo
{
 public static $my_static = 'foo';

 public function staticValue() {
 return self::$my_static;
 }
}

class Bar extends Foo
{
 public function fooStatic() {
 return parent::$my_static;
 }
}

print Foo::$my_static . "\n";

$foo = new Foo();
print $foo->staticValue() . "\n";
print $foo->my_static . "\n"; // Undefined "Property" my_static

print $foo::$my_static . "\n";
$classname = 'Foo';
print $classname::$my_static . "\n";

print Bar::$my_static . "\n";
$bar = new Bar();
print $bar->fooStatic() . "\n";
?>

 Output of the above example in PHP 8 is similar to:

foo
foo

Notice: Accessing static property Foo::$my_static as non static in /in/V0Rvv on line 23

Warning: Undefined property: Foo::$my_static in /in/V0Rvv on line 23

foo
foo
foo
foo

 Class Abstraction

 PHP has abstract classes and methods.
 Classes defined as abstract cannot be instantiated, and any class that
 contains at least one abstract method must also be abstract.
 Methods defined as abstract simply declare the method's signature;
 they cannot define the implementation.

 When inheriting from an abstract class, all methods marked abstract in
 the parent's class declaration must be defined by the child class,
 and follow the usual
 inheritance and
 signature compatibility rules.

 Example #1 Abstract class example

<?php
abstract class AbstractClass
{
 // Force Extending class to define this method
 abstract protected function getValue();
 abstract protected function prefixValue($prefix);

 // Common method
 public function printOut() {
 print $this->getValue() . "\n";
 }
}

class ConcreteClass1 extends AbstractClass
{
 protected function getValue() {
 return "ConcreteClass1";
 }

 public function prefixValue($prefix) {
 return "{$prefix}ConcreteClass1";
 }
}

class ConcreteClass2 extends AbstractClass
{
 public function getValue() {
 return "ConcreteClass2";
 }

 public function prefixValue($prefix) {
 return "{$prefix}ConcreteClass2";
 }
}

$class1 = new ConcreteClass1;
$class1->printOut();
echo $class1->prefixValue('FOO_') ."\n";

$class2 = new ConcreteClass2;
$class2->printOut();
echo $class2->prefixValue('FOO_') ."\n";
?>

 The above example will output:

ConcreteClass1
FOO_ConcreteClass1
ConcreteClass2
FOO_ConcreteClass2

 Example #2 Abstract class example

<?php
abstract class AbstractClass
{
 // Our abstract method only needs to define the required arguments
 abstract protected function prefixName($name);

}

class ConcreteClass extends AbstractClass
{

 // Our child class may define optional arguments not in the parent's signature
 public function prefixName($name, $separator = ".") {
 if ($name == "Pacman") {
 $prefix = "Mr";
 } elseif ($name == "Pacwoman") {
 $prefix = "Mrs";
 } else {
 $prefix = "";
 }
 return "{$prefix}{$separator} {$name}";
 }
}

$class = new ConcreteClass;
echo $class->prefixName("Pacman"), "\n";
echo $class->prefixName("Pacwoman"), "\n";
?>

 The above example will output:

Mr. Pacman
Mrs. Pacwoman

 Object Interfaces

 Object interfaces allow you to create code which specifies which methods a
 class must implement, without having to define how these methods are
 implemented. Interfaces share a namespace with classes and traits, so they may
 not use the same name.

 Interfaces are defined in the same way as a class, but with the interface
 keyword replacing the class keyword and without any of the methods having
 their contents defined.

 All methods declared in an interface must be public; this is the nature of an
 interface.

 In practice, interfaces serve two complementary purposes:

 	
 To allow developers to create objects of different classes that may be used interchangeably
 because they implement the same interface or interfaces. A common example is multiple database access services,
 multiple payment gateways, or different caching strategies. Different implementations may
 be swapped out without requiring any changes to the code that uses them.

 	
 To allow a function or method to accept and operate on a parameter that conforms to an
 interface, while not caring what else the object may do or how it is implemented. These interfaces
 are often named like Iterable, Cacheable, Renderable,
 or so on to describe the significance of the behavior.

 Interfaces may define
 magic methods to require implementing classes to
 implement those methods.

 Note:

 Although they are supported, including constructors
 in interfaces is strongly discouraged. Doing so significantly reduces the flexibility of the object implementing the
 interface. Additionally, constructors are not enforced by inheritance rules, which can cause inconsistent
 and unexpected behavior.

 implements

 To implement an interface, the implements operator is used.
 All methods in the interface must be implemented within a class; failure to do
 so will result in a fatal error. Classes may implement more than one interface
 if desired by separating each interface with a comma.

 Warning

 A class that implements an interface may use a different name for its parameters than
 the interface. However, as of PHP 8.0 the language supports named arguments, which means
 callers may rely on the parameter name in the interface. For that reason, it is strongly
 recommended that developers use the same parameter names as the interface being implemented.

 Note:

 Interfaces can be extended like classes using the extends
 operator.

 Note:

 The class implementing the interface must declare all methods in the interface
 with a compatible signature. A class can implement multiple interfaces
 which declare a method with the same name. In this case, the implementation must follow the
 signature compatibility rules for all the interfaces. So
 covariance and contravariance can be applied.

 Constants

 It's possible for interfaces to have constants. Interface constants work exactly
 like class constants.
 Prior to PHP 8.1.0, they cannot be overridden by a class/interface that inherits them.

 Examples

 Example #1 Interface example

<?php

// Declare the interface 'Template'
interface Template
{
 public function setVariable($name, $var);
 public function getHtml($template);
}

// Implement the interface
// This will work
class WorkingTemplate implements Template
{
 private $vars = [];

 public function setVariable($name, $var)
 {
 $this->vars[$name] = $var;
 }

 public function getHtml($template)
 {
 foreach($this->vars as $name => $value) {
 $template = str_replace('{' . $name . '}', $value, $template);
 }

 return $template;
 }
}

// This will not work
// Fatal error: Class BadTemplate contains 1 abstract methods
// and must therefore be declared abstract (Template::getHtml)
class BadTemplate implements Template
{
 private $vars = [];

 public function setVariable($name, $var)
 {
 $this->vars[$name] = $var;
 }
}
?>

 Example #2 Extendable Interfaces

<?php
interface A
{
 public function foo();
}

interface B extends A
{
 public function baz(Baz $baz);
}

// This will work
class C implements B
{
 public function foo()
 {
 }

 public function baz(Baz $baz)
 {
 }
}

// This will not work and result in a fatal error
class D implements B
{
 public function foo()
 {
 }

 public function baz(Foo $foo)
 {
 }
}
?>

 Example #3 Variance compatibility with multiple interfaces

<?php
class Foo {}
class Bar extends Foo {}

interface A {
 public function myfunc(Foo $arg): Foo;
}

interface B {
 public function myfunc(Bar $arg): Bar;
}

class MyClass implements A, B
{
 public function myfunc(Foo $arg): Bar
 {
 return new Bar();
 }
}
?>

 Example #4 Multiple interface inheritance

<?php
interface A
{
 public function foo();
}

interface B
{
 public function bar();
}

interface C extends A, B
{
 public function baz();
}

class D implements C
{
 public function foo()
 {
 }

 public function bar()
 {
 }

 public function baz()
 {
 }
}
?>

 Example #5 Interfaces with constants

<?php
interface A
{
 const B = 'Interface constant';
}

// Prints: Interface constant
echo A::B;

class B implements A
{
 const B = 'Class constant';
}

// Prints: Class constant
// Prior to PHP 8.1.0, this will however not work because it was not
// allowed to override constants.
echo B::B;
?>

 Example #6 Interfaces with abstract classes

<?php
interface A
{
 public function foo(string $s): string;

 public function bar(int $i): int;
}

// An abstract class may implement only a portion of an interface.
// Classes that extend the abstract class must implement the rest.
abstract class B implements A
{
 public function foo(string $s): string
 {
 return $s . PHP_EOL;
 }
}

class C extends B
{
 public function bar(int $i): int
 {
 return $i * 2;
 }
}
?>

 Example #7 Extending and implementing simultaneously

<?php

class One
{
 /* ... */
}

interface Usable
{
 /* ... */
}

interface Updatable
{
 /* ... */
}

// The keyword order here is important. 'extends' must come first.
class Two extends One implements Usable, Updatable
{
 /* ... */
}
?>

 An interface, together with type declarations, provides a good way to make sure
 that a particular object contains particular methods. See
 instanceof operator and
 type declarations.

 Traits

 PHP implements a way to reuse code called Traits.

 Traits are a mechanism for code reuse in single inheritance languages such as
 PHP. A Trait is intended to reduce some limitations of single inheritance by
 enabling a developer to reuse sets of methods freely in several independent
 classes living in different class hierarchies. The semantics of the combination
 of Traits and classes is defined in a way which reduces complexity, and avoids
 the typical problems associated with multiple inheritance and Mixins.

 A Trait is similar to a class, but only intended to group functionality in a
 fine-grained and consistent way. It is not possible to instantiate a Trait on
 its own. It is an addition to traditional inheritance and enables horizontal
 composition of behavior; that is, the application of class members without
 requiring inheritance.

 Example #1 Trait example

<?php
trait ezcReflectionReturnInfo {
 function getReturnType() { /*1*/ }
 function getReturnDescription() { /*2*/ }
}

class ezcReflectionMethod extends ReflectionMethod {
 use ezcReflectionReturnInfo;
 /* ... */
}

class ezcReflectionFunction extends ReflectionFunction {
 use ezcReflectionReturnInfo;
 /* ... */
}
?>

 Precedence

 An inherited member from a base class is overridden by a member inserted
 by a Trait. The precedence order is that members from the current class
 override Trait methods, which in turn override inherited methods.

 Example #2 Precedence Order Example

 An inherited method from a base class is overridden by the
 method inserted into MyHelloWorld from the SayWorld Trait. The behavior is
 the same for methods defined in the MyHelloWorld class. The precedence order
 is that methods from the current class override Trait methods, which in
 turn override methods from the base class.

<?php
class Base {
 public function sayHello() {
 echo 'Hello ';
 }
}

trait SayWorld {
 public function sayHello() {
 parent::sayHello();
 echo 'World!';
 }
}

class MyHelloWorld extends Base {
 use SayWorld;
}

$o = new MyHelloWorld();
$o->sayHello();
?>

 The above example will output:

Hello World!

 Example #3 Alternate Precedence Order Example

<?php
trait HelloWorld {
 public function sayHello() {
 echo 'Hello World!';
 }
}

class TheWorldIsNotEnough {
 use HelloWorld;
 public function sayHello() {
 echo 'Hello Universe!';
 }
}

$o = new TheWorldIsNotEnough();
$o->sayHello();
?>

 The above example will output:

Hello Universe!

 Multiple Traits

 Multiple Traits can be inserted into a class by listing them in the use
 statement, separated by commas.

 Example #4 Multiple Traits Usage

<?php
trait Hello {
 public function sayHello() {
 echo 'Hello ';
 }
}

trait World {
 public function sayWorld() {
 echo 'World';
 }
}

class MyHelloWorld {
 use Hello, World;
 public function sayExclamationMark() {
 echo '!';
 }
}

$o = new MyHelloWorld();
$o->sayHello();
$o->sayWorld();
$o->sayExclamationMark();
?>

 The above example will output:

Hello World!

 Conflict Resolution

 If two Traits insert a method with the same name, a fatal error is produced,
 if the conflict is not explicitly resolved.

 To resolve naming conflicts between Traits used in the same class,
 the insteadof operator needs to be used to choose exactly
 one of the conflicting methods.

 Since this only allows one to exclude methods, the as
 operator can be used to add an alias to one of the methods. Note the
 as operator does not rename the method and it does not
 affect any other method either.

 Example #5 Conflict Resolution

 In this example, Talker uses the traits A and B.
 Since A and B have conflicting methods, it defines to use
 the variant of smallTalk from trait B, and the variant of bigTalk from
 trait A.

 The Aliased_Talker makes use of the as operator
 to be able to use B's bigTalk implementation under an additional alias
 talk.

<?php
trait A {
 public function smallTalk() {
 echo 'a';
 }
 public function bigTalk() {
 echo 'A';
 }
}

trait B {
 public function smallTalk() {
 echo 'b';
 }
 public function bigTalk() {
 echo 'B';
 }
}

class Talker {
 use A, B {
 B::smallTalk insteadof A;
 A::bigTalk insteadof B;
 }
}

class Aliased_Talker {
 use A, B {
 B::smallTalk insteadof A;
 A::bigTalk insteadof B;
 B::bigTalk as talk;
 }
}
?>

 Changing Method Visibility

 Using the as syntax, one can also adjust the visibility
 of the method in the exhibiting class.

 Example #6 Changing Method Visibility

<?php
trait HelloWorld {
 public function sayHello() {
 echo 'Hello World!';
 }
}

// Change visibility of sayHello
class MyClass1 {
 use HelloWorld { sayHello as protected; }
}

// Alias method with changed visibility
// sayHello visibility not changed
class MyClass2 {
 use HelloWorld { sayHello as private myPrivateHello; }
}
?>

 Traits Composed from Traits

 Just as classes can make use of traits, so can other traits. By using one
 or more traits in a trait definition, it can be composed partially or
 entirely of the members defined in those other traits.

 Example #7 Traits Composed from Traits

<?php
trait Hello {
 public function sayHello() {
 echo 'Hello ';
 }
}

trait World {
 public function sayWorld() {
 echo 'World!';
 }
}

trait HelloWorld {
 use Hello, World;
}

class MyHelloWorld {
 use HelloWorld;
}

$o = new MyHelloWorld();
$o->sayHello();
$o->sayWorld();
?>

 The above example will output:

Hello World!

 Abstract Trait Members

 Traits support the use of abstract methods in order to impose requirements
 upon the exhibiting class. Public, protected, and private methods are supported.
 Prior to PHP 8.0.0, only public and protected abstract methods were supported.

 Caution

 As of PHP 8.0.0, the signature of a concrete method must follow the
 signature compatibility rules.
 Previously, its signature might be different.

 Example #8 Express Requirements by Abstract Methods

<?php
trait Hello {
 public function sayHelloWorld() {
 echo 'Hello'.$this->getWorld();
 }
 abstract public function getWorld();
}

class MyHelloWorld {
 private $world;
 use Hello;
 public function getWorld() {
 return $this->world;
 }
 public function setWorld($val) {
 $this->world = $val;
 }
}
?>

 Static Trait Members

 Traits can define static variables, static methods and static properties.

 Note:

 As of PHP 8.1.0, calling a static method, or accessing a static property directly on a trait is deprecated.
 Static methods and properties should only be accessed on a class using the trait.

 Example #9 Static Variables

<?php
trait Counter {
 public function inc() {
 static $c = 0;
 $c = $c + 1;
 echo "$c\n";
 }
}

class C1 {
 use Counter;
}

class C2 {
 use Counter;
}

$o = new C1(); $o->inc(); // echo 1
$p = new C2(); $p->inc(); // echo 1
?>

 Example #10 Static Methods

<?php
trait StaticExample {
 public static function doSomething() {
 return 'Doing something';
 }
}

class Example {
 use StaticExample;
}

Example::doSomething();
?>

 Example #11 Static Properties

 <?php
trait StaticExample {
 public static $static = 'foo';
}

class Example {
 use StaticExample;
}

echo Example::$static;
?>

 Properties

 Traits can also define properties.

 Example #12 Defining Properties

<?php
trait PropertiesTrait {
 public $x = 1;
}

class PropertiesExample {
 use PropertiesTrait;
}

$example = new PropertiesExample;
$example->x;
?>

 If a trait defines a property then a class can not define a property with
 the same name unless it is compatible (same visibility and type,
 readonly modifier, and initial value), otherwise a fatal error is issued.

 Example #13 Conflict Resolution

<?php
trait PropertiesTrait {
 public $same = true;
 public $different1 = false;
 public bool $different2;
 public bool $different3;
}

class PropertiesExample {
 use PropertiesTrait;
 public $same = true;
 public $different1 = true; // Fatal error
 public string $different2; // Fatal error
 readonly protected bool $different3; // Fatal error
}
?>

 Constants

 Traits can, as of PHP 8.2.0, also define constants.

 Example #14 Defining Constants

<?php
trait ConstantsTrait {
 public const FLAG_MUTABLE = 1;
 final public const FLAG_IMMUTABLE = 5;
}

class ConstantsExample {
 use ConstantsTrait;
}

$example = new ConstantsExample;
echo $example::FLAG_MUTABLE; // 1
?>

 If a trait defines a constant then a class can not define a constant with
 the same name unless it is compatible (same visibility, initial value, and
 finality), otherwise a fatal error is issued.

 Example #15 Conflict Resolution

<?php
trait ConstantsTrait {
 public const FLAG_MUTABLE = 1;
 final public const FLAG_IMMUTABLE = 5;
}

class ConstantsExample {
 use ConstantsTrait;
 public const FLAG_IMMUTABLE = 5; // Fatal error
}
?>

 Anonymous classes

 Anonymous classes are useful when simple, one-off objects need to be created.

<?php

// Using an explicit class
class Logger
{
 public function log($msg)
 {
 echo $msg;
 }
}

$util->setLogger(new Logger());

// Using an anonymous class
$util->setLogger(new class {
 public function log($msg)
 {
 echo $msg;
 }
});

 They can pass arguments through to their constructors, extend other classes,
 implement interfaces, and use traits just like a normal class can:

<?php

class SomeClass {}
interface SomeInterface {}
trait SomeTrait {}

var_dump(new class(10) extends SomeClass implements SomeInterface {
 private $num;

 public function __construct($num)
 {
 $this->num = $num;
 }

 use SomeTrait;
});

 The above example will output:

object(class@anonymous)#1 (1) {
 ["Command line code0x104c5b612":"class@anonymous":private]=>
 int(10)
}

 Nesting an anonymous class within another class does not give it access to
 any private or protected methods or properties of that outer class. In order
 to use the outer class' protected properties or methods, the anonymous class
 can extend the outer class. To use the private properties of
 the outer class in the anonymous class, they must be passed through its
 constructor:

<?php

class Outer
{
 private $prop = 1;
 protected $prop2 = 2;

 protected function func1()
 {
 return 3;
 }

 public function func2()
 {
 return new class($this->prop) extends Outer {
 private $prop3;

 public function __construct($prop)
 {
 $this->prop3 = $prop;
 }

 public function func3()
 {
 return $this->prop2 + $this->prop3 + $this->func1();
 }
 };
 }
}

echo (new Outer)->func2()->func3();

 The above example will output:

6

 All objects created by the same anonymous class declaration are instances of
 that very class.

<?php
function anonymous_class()
{
 return new class {};
}

if (get_class(anonymous_class()) === get_class(anonymous_class())) {
 echo 'same class';
} else {
 echo 'different class';
}

 The above example will output:

same class

 Note:

 Note that anonymous classes are assigned a name by the engine, as
 demonstrated in the following example. This name has to be regarded an
 implementation detail, which should not be relied upon.

<?php
echo get_class(new class {});

 The above example will output
something similar to:

class@anonymous/in/oNi1A0x7f8636ad2021

 Overloading

 Overloading in PHP provides means to dynamically
 create properties and methods.
 These dynamic entities are processed via magic methods
 one can establish in a class for various action types.

 The overloading methods are invoked when interacting with
 properties or methods that have not been declared or are not
 visible in
 the current scope. The rest of this section will use the terms
 inaccessible properties and inaccessible
 methods to refer to this combination of declaration
 and visibility.

 All overloading methods must be defined as public.

 Note:

 None of the arguments of these magic methods can be
 passed by
 reference.

 Note:

 PHP's interpretation of overloading is
 different than most object-oriented languages. Overloading
 traditionally provides the ability to have multiple methods
 with the same name but different quantities and types of
 arguments.

 Property overloading

 public __set(string $name, mixed $value): void

 public __get(string $name): mixed

 public __isset(string $name): bool

 public __unset(string $name): void

 __set() is run when writing data to
 inaccessible (protected or private) or non-existing properties.

 __get() is utilized for reading data from
 inaccessible (protected or private) or non-existing properties.

 __isset() is triggered by calling
 isset() or empty()
 on inaccessible (protected or private) or non-existing properties.

 __unset() is invoked when
 unset() is used on inaccessible (protected or private)
 or non-existing properties.

 The $name argument is the name of the
 property being interacted with. The __set()
 method's $value argument specifies the
 value the $name'ed property should be set
 to.

 Property overloading only works in object context. These magic
 methods will not be triggered in static context. Therefore
 these methods should not be declared
 static.
 A warning is issued if one of the magic overloading
 methods is declared static.

 Note:

 The return value of __set() is ignored
 because of the way PHP processes the assignment operator.
 Similarly, __get() is never called when
 chaining assignments together like this:
 $a = $obj->b = 8;

 Note:

 PHP will not call an overloaded method from within the same overloaded method.
 That means, for example, writing return $this->foo inside of
 __get() will return null
 and raise an E_WARNING if there is no foo property defined,
 rather than calling __get() a second time.
 However, overload methods may invoke other overload methods implicitly (such as
 __set() triggering __get()).

 Example #1
 Overloading properties via the __get(),
 __set(), __isset()
 and __unset() methods

<?php
class PropertyTest
{
 /** Location for overloaded data. */
 private $data = array();

 /** Overloading not used on declared properties. */
 public $declared = 1;

 /** Overloading only used on this when accessed outside the class. */
 private $hidden = 2;

 public function __set($name, $value)
 {
 echo "Setting '$name' to '$value'\n";
 $this->data[$name] = $value;
 }

 public function __get($name)
 {
 echo "Getting '$name'\n";
 if (array_key_exists($name, $this->data)) {
 return $this->data[$name];
 }

 $trace = debug_backtrace();
 trigger_error(
 'Undefined property via __get(): ' . $name .
 ' in ' . $trace[0]['file'] .
 ' on line ' . $trace[0]['line'],
 E_USER_NOTICE);
 return null;
 }

 public function __isset($name)
 {
 echo "Is '$name' set?\n";
 return isset($this->data[$name]);
 }

 public function __unset($name)
 {
 echo "Unsetting '$name'\n";
 unset($this->data[$name]);
 }

 /** Not a magic method, just here for example. */
 public function getHidden()
 {
 return $this->hidden;
 }
}

echo "<pre>\n";

$obj = new PropertyTest;

$obj->a = 1;
echo $obj->a . "\n\n";

var_dump(isset($obj->a));
unset($obj->a);
var_dump(isset($obj->a));
echo "\n";

echo $obj->declared . "\n\n";

echo "Let's experiment with the private property named 'hidden':\n";
echo "Privates are visible inside the class, so __get() not used...\n";
echo $obj->getHidden() . "\n";
echo "Privates not visible outside of class, so __get() is used...\n";
echo $obj->hidden . "\n";
?>

 The above example will output:

Setting 'a' to '1'
Getting 'a'
1

Is 'a' set?
bool(true)
Unsetting 'a'
Is 'a' set?
bool(false)

1

Let's experiment with the private property named 'hidden':
Privates are visible inside the class, so __get() not used...
2
Privates not visible outside of class, so __get() is used...
Getting 'hidden'

Notice: Undefined property via __get(): hidden in <file> on line 70 in <file> on line 29

 Method overloading

 public __call(string $name, array $arguments): mixed

 public static __callStatic(string $name, array $arguments): mixed

 __call() is triggered when invoking
 inaccessible methods in an object context.

 __callStatic() is triggered when invoking
 inaccessible methods in a static context.

 The $name argument is the name of the
 method being called. The $arguments
 argument is an enumerated array containing the parameters
 passed to the $name'ed method.

 Example #2
 Overloading methods via the __call()
 and __callStatic() methods

 <?php
class MethodTest
{
 public function __call($name, $arguments)
 {
 // Note: value of $name is case sensitive.
 echo "Calling object method '$name' "
 . implode(', ', $arguments). "\n";
 }

 public static function __callStatic($name, $arguments)
 {
 // Note: value of $name is case sensitive.
 echo "Calling static method '$name' "
 . implode(', ', $arguments). "\n";
 }
}

$obj = new MethodTest;
$obj->runTest('in object context');

MethodTest::runTest('in static context');
?>

 The above example will output:

Calling object method 'runTest' in object context
Calling static method 'runTest' in static context

 Object Iteration

 PHP provides a way for objects to be defined so it is possible to iterate
 through a list of items, with, for example a foreach statement. By default,
 all visible properties will be used
 for the iteration.

 Example #1 Simple Object Iteration

<?php
class MyClass
{
 public $var1 = 'value 1';
 public $var2 = 'value 2';
 public $var3 = 'value 3';

 protected $protected = 'protected var';
 private $private = 'private var';

 function iterateVisible() {
 echo "MyClass::iterateVisible:\n";
 foreach ($this as $key => $value) {
 print "$key => $value\n";
 }
 }
}

$class = new MyClass();

foreach($class as $key => $value) {
 print "$key => $value\n";
}
echo "\n";

$class->iterateVisible();

?>

 The above example will output:

var1 => value 1
var2 => value 2
var3 => value 3

MyClass::iterateVisible:
var1 => value 1
var2 => value 2
var3 => value 3
protected => protected var
private => private var

 As the output shows, the foreach iterated through all of the
 visible properties that could be
 accessed.

 See Also

 	Generators

 	Iterator

 	IteratorAggregate

 	SPL Iterators

 Magic Methods

 Magic methods are special methods which override PHP's default's action
 when certain actions are performed on an object.

 Caution

 All methods names starting with __ are reserved by PHP.
 Therefore, it is not recommended to use such method names unless overriding
 PHP's behavior.

 The following method names are considered magical:

 __construct(),
 __destruct(),
 __call(),
 __callStatic(),
 __get(),
 __set(),
 __isset(),
 __unset(),
 __sleep(),
 __wakeup(),
 __serialize(),
 __unserialize(),
 __toString(),
 __invoke(),
 __set_state(),
 __clone(), and
 __debugInfo().

 Warning

 All magic methods, with the exception of
 __construct(),
 __destruct(), and
 __clone(),
 must be declared as public,
 otherwise an E_WARNING is emitted.
 Prior to PHP 8.0.0, no diagnostic was emitted for the magic methods
 __sleep(),
 __wakeup(),
 __serialize(),
 __unserialize(), and
 __set_state().

 Warning

 If type declarations are used in the definition of a magic method, they
 must be identical to the signature described in this document.
 Otherwise, a fatal error is emitted.
 Prior to PHP 8.0.0, no diagnostic was emitted.
 However, __construct() and
 __destruct() must not declare a return type;
 otherwise a fatal error is emitted.

 __sleep() and
 __wakeup()

 public __sleep(): array

 public __wakeup(): void

 serialize() checks if the class has a function with
 the magic name __sleep(). If so, that function is
 executed prior to any serialization. It can clean up the object
 and is supposed to return an array with the names of all variables
 of that object that should be serialized.
 If the method doesn't return anything then null is serialized and
 E_NOTICE is issued.

 Note:

 It is not possible for __sleep() to return names of
 private properties in parent classes. Doing this will result in an
 E_NOTICE level error.
 Use __serialize() instead.

 Note:

 As of PHP 8.0.0, returning a value which is not an array from __sleep() generates a warning. Previously, it generated a notice.

 The intended use of __sleep() is to commit pending
 data or perform similar cleanup tasks. Also, the function is
 useful if a very large object doesn't need to be saved completely.

 Conversely, unserialize() checks for the
 presence of a function with the magic name
 __wakeup(). If present, this function can
 reconstruct any resources that the object may have.

 The intended use of __wakeup() is to
 reestablish any database connections that may have been lost
 during serialization and perform other reinitialization
 tasks.

 Example #1 Sleep and wakeup

<?php
class Connection
{
 protected $link;
 private $dsn, $username, $password;

 public function __construct($dsn, $username, $password)
 {
 $this->dsn = $dsn;
 $this->username = $username;
 $this->password = $password;
 $this->connect();
 }

 private function connect()
 {
 $this->link = new PDO($this->dsn, $this->username, $this->password);
 }

 public function __sleep()
 {
 return array('dsn', 'username', 'password');
 }

 public function __wakeup()
 {
 $this->connect();
 }
}?>

 __serialize() and
 __unserialize()

 public __serialize(): array

 public __unserialize(array $data): void

 serialize() checks if the class has a function with
 the magic name __serialize(). If so, that function is
 executed prior to any serialization. It must construct and return an associative array of key/value pairs
 that represent the serialized form of the object. If no array is returned a TypeError
 will be thrown.

 Note:

 If both __serialize() and __sleep()
 are defined in the same object, only __serialize() will be called.
 __sleep() will be ignored. If the object implements the Serializable
 interface, the interface's serialize() method will be ignored and __serialize()
 used instead.

 The intended use of __serialize() is to define a serialization-friendly
 arbitrary representation of the object. Elements of the array may correspond to properties of the object but
 that is not required.

 Conversely, unserialize() checks for the
 presence of a function with the magic name
 __unserialize(). If present, this function will be passed the
 restored array that was returned from __serialize(). It may
 then restore the properties of the object from that array as appropriate.

 Note:

 If both __unserialize() and __wakeup()
 are defined in the same object, only __unserialize() will be called.
 __wakeup() will be ignored.

 Note:

 This feature is available as of PHP 7.4.0.

 Example #2 Serialize and unserialize

<?php
class Connection
{
 protected $link;
 private $dsn, $username, $password;

 public function __construct($dsn, $username, $password)
 {
 $this->dsn = $dsn;
 $this->username = $username;
 $this->password = $password;
 $this->connect();
 }

 private function connect()
 {
 $this->link = new PDO($this->dsn, $this->username, $this->password);
 }

 public function __serialize(): array
 {
 return [
 'dsn' => $this->dsn,
 'user' => $this->username,
 'pass' => $this->password,
];
 }

 public function __unserialize(array $data): void
 {
 $this->dsn = $data['dsn'];
 $this->username = $data['user'];
 $this->password = $data['pass'];

 $this->connect();
 }
}?>

 __toString()

 public __toString(): string

 The __toString() method allows a class to decide
 how it will react when it is treated like a string. For example,
 what echo $obj; will print.

 Warning

 As of PHP 8.0.0, the return value follows standard PHP type semantics,
 meaning it will be coerced into a string if possible and if
 strict typing
 is disabled.

 A Stringable object will
 not be accepted by a string type declaration if
 strict typing
 is enabled. If such behaviour is wanted the type declaration must accept
 Stringable and string via a union type.

 As of PHP 8.0.0, any class that contains a __toString()
 method will also implicitly implement the Stringable interface, and will
 thus pass type checks for that interface. Explicitly implementing the interface anyway is
 recommended.

 In PHP 7.4, the returned value must be a
 string, otherwise an Error is thrown.

 Prior to PHP 7.4.0, the returned value must be a
 string, otherwise a fatal E_RECOVERABLE_ERROR
 is emitted.

 Warning

 It was not possible to throw an exception from within a
 __toString()
 method prior to PHP 7.4.0. Doing so will result in a fatal error.

 Example #3 Simple example

<?php
// Declare a simple class
class TestClass
{
 public $foo;

 public function __construct($foo)
 {
 $this->foo = $foo;
 }

 public function __toString()
 {
 return $this->foo;
 }
}

$class = new TestClass('Hello');
echo $class;
?>

 The above example will output:

Hello

 __invoke()

 __invoke(...$values): mixed

 The __invoke() method is called when a script tries to
 call an object as a function.

 Example #4 Using __invoke()

<?php
class CallableClass
{
 public function __invoke($x)
 {
 var_dump($x);
 }
}
$obj = new CallableClass;
$obj(5);
var_dump(is_callable($obj));
?>

 The above example will output:

int(5)
bool(true)

 Example #5 Using __invoke()

<?php
class Sort
{
 private $key;

 public function __construct(string $key)
 {
 $this->key = $key;
 }

 public function __invoke(array $a, array $b): int
 {
 return $a[$this->key] <=> $b[$this->key];
 }
}

$customers = [
 ['id' => 1, 'first_name' => 'John', 'last_name' => 'Do'],
 ['id' => 3, 'first_name' => 'Alice', 'last_name' => 'Gustav'],
 ['id' => 2, 'first_name' => 'Bob', 'last_name' => 'Filipe']
];

// sort customers by first name
usort($customers, new Sort('first_name'));
print_r($customers);

// sort customers by last name
usort($customers, new Sort('last_name'));
print_r($customers);
?>

 The above example will output:

Array
(
 [0] => Array
 (
 [id] => 3
 [first_name] => Alice
 [last_name] => Gustav
)

 [1] => Array
 (
 [id] => 2
 [first_name] => Bob
 [last_name] => Filipe
)

 [2] => Array
 (
 [id] => 1
 [first_name] => John
 [last_name] => Do
)

)
Array
(
 [0] => Array
 (
 [id] => 1
 [first_name] => John
 [last_name] => Do
)

 [1] => Array
 (
 [id] => 2
 [first_name] => Bob
 [last_name] => Filipe
)

 [2] => Array
 (
 [id] => 3
 [first_name] => Alice
 [last_name] => Gustav
)

)

 __set_state()

 static __set_state(array $properties): object

 This static method is called
 for classes exported by var_export().

 The only parameter of this method is an array containing exported
 properties in the form ['property' => value, ...].

 Example #6 Using __set_state()

<?php

class A
{
 public $var1;
 public $var2;

 public static function __set_state($an_array)
 {
 $obj = new A;
 $obj->var1 = $an_array['var1'];
 $obj->var2 = $an_array['var2'];
 return $obj;
 }
}

$a = new A;
$a->var1 = 5;
$a->var2 = 'foo';

$b = var_export($a, true);
var_dump($b);
eval('$c = ' . $b . ';');
var_dump($c);
?>

 The above example will output:

string(60) "A::__set_state(array(
 'var1' => 5,
 'var2' => 'foo',
))"
object(A)#2 (2) {
 ["var1"]=>
 int(5)
 ["var2"]=>
 string(3) "foo"
}

 Note:

 When exporting an object, var_export() does not check
 whether __set_state() is
 implemented by the object's class, so re-importing objects will result in an Error exception,
 if __set_state() is not implemented. Particularly, this affects some
 internal classes.

 It is the responsibility of the programmer to verify that only objects will
 be re-imported, whose class implements __set_state().

 __debugInfo()

 __debugInfo(): array

 This method is called by var_dump() when dumping an
 object to get the properties that should be shown. If the method isn't
 defined on an object, then all public, protected and private properties
 will be shown.

 Example #7 Using __debugInfo()

<?php
class C {
 private $prop;

 public function __construct($val) {
 $this->prop = $val;
 }

 public function __debugInfo() {
 return [
 'propSquared' => $this->prop ** 2,
];
 }
}

var_dump(new C(42));
?>

 The above example will output:

object(C)#1 (1) {
 ["propSquared"]=>
 int(1764)
}

 Final Keyword

 The final keyword prevents child classes from overriding a method or constant by
 prefixing the definition with final. If the class
 itself is being defined final then it cannot be extended.

 Example #1 Final methods example

<?php
class BaseClass {
 public function test() {
 echo "BaseClass::test() called\n";
 }

 final public function moreTesting() {
 echo "BaseClass::moreTesting() called\n";
 }
}

class ChildClass extends BaseClass {
 public function moreTesting() {
 echo "ChildClass::moreTesting() called\n";
 }
}
// Results in Fatal error: Cannot override final method BaseClass::moreTesting()
?>

 Example #2 Final class example

<?php
final class BaseClass {
 public function test() {
 echo "BaseClass::test() called\n";
 }

 // As the class is already final, the final keyword is redundant
 final public function moreTesting() {
 echo "BaseClass::moreTesting() called\n";
 }
}

class ChildClass extends BaseClass {
}
// Results in Fatal error: Class ChildClass may not inherit from final class (BaseClass)
?>

 Example #3 Final constants example as of PHP 8.1.0

<?php
class Foo
{
 final public const X = "foo";
}

class Bar extends Foo
{
 public const X = "bar";
}

// Fatal error: Bar::X cannot override final constant Foo::X
?>

 Note:

 Properties cannot be declared final: only classes, methods, and constants (as of PHP 8.1.0) may be declared as final.

 As of PHP 8.0.0, private methods may not be declared final except for the constructor.

 Object Cloning

 Creating a copy of an object with fully replicated properties is not
 always the wanted behavior. A good example of the need for copy
 constructors, is if you have an object which represents a GTK window and the
 object holds the resource of this GTK window, when you create a duplicate
 you might want to create a new window with the same properties and have the
 new object hold the resource of the new window. Another example is if your
 object holds a reference to another object which it uses and when you
 replicate the parent object you want to create a new instance of this other
 object so that the replica has its own separate copy.

 An object copy is created by using the clone keyword
 (which calls the object's __clone()
 method if possible).

$copy_of_object = clone $object;

 When an object is cloned, PHP will perform a shallow copy of all of the
 object's properties. Any properties that are references to other variables
 will remain references.

 __clone(): void

 Once the cloning is complete, if a __clone() method is defined, then
 the newly created object's __clone() method will be called, to allow any
 necessary properties that need to be changed.

 Example #1 Cloning an object

<?php
class SubObject
{
 static $instances = 0;
 public $instance;

 public function __construct() {
 $this->instance = ++self::$instances;
 }

 public function __clone() {
 $this->instance = ++self::$instances;
 }
}

class MyCloneable
{
 public $object1;
 public $object2;

 function __clone()
 {
 // Force a copy of this->object, otherwise
 // it will point to same object.
 $this->object1 = clone $this->object1;
 }
}

$obj = new MyCloneable();

$obj->object1 = new SubObject();
$obj->object2 = new SubObject();

$obj2 = clone $obj;

print "Original Object:\n";
print_r($obj);

print "Cloned Object:\n";
print_r($obj2);

?>

 The above example will output:

Original Object:
MyCloneable Object
(
 [object1] => SubObject Object
 (
 [instance] => 1
)

 [object2] => SubObject Object
 (
 [instance] => 2
)

)
Cloned Object:
MyCloneable Object
(
 [object1] => SubObject Object
 (
 [instance] => 3
)

 [object2] => SubObject Object
 (
 [instance] => 2
)

)

 It is possible to access a member of a freshly cloned
 object in a single expression:

 Example #2 Access member of freshly cloned object

<?php
$dateTime = new DateTime();
echo (clone $dateTime)->format('Y');
?>

 The above example will output
something similar to:

2016

 Comparing Objects

 When using the comparison operator (==),
 object variables are compared in a simple manner, namely: Two object
 instances are equal if they have the same attributes and values (values are compared with ==), and are
 instances of the same class.

 When using the identity operator (===),
 object variables are identical if and only if they refer to the same
 instance of the same class.

 An example will clarify these rules.

 Example #1 Example of object comparison

<?php
function bool2str($bool)
{
 if ($bool === false) {
 return 'FALSE';
 } else {
 return 'TRUE';
 }
}

function compareObjects(&$o1, &$o2)
{
 echo 'o1 == o2 : ' . bool2str($o1 == $o2) . "\n";
 echo 'o1 != o2 : ' . bool2str($o1 != $o2) . "\n";
 echo 'o1 === o2 : ' . bool2str($o1 === $o2) . "\n";
 echo 'o1 !== o2 : ' . bool2str($o1 !== $o2) . "\n";
}

class Flag
{
 public $flag;

 function __construct($flag = true) {
 $this->flag = $flag;
 }
}

class OtherFlag
{
 public $flag;

 function __construct($flag = true) {
 $this->flag = $flag;
 }
}

$o = new Flag();
$p = new Flag();
$q = $o;
$r = new OtherFlag();

echo "Two instances of the same class\n";
compareObjects($o, $p);

echo "\nTwo references to the same instance\n";
compareObjects($o, $q);

echo "\nInstances of two different classes\n";
compareObjects($o, $r);
?>

 The above example will output:

Two instances of the same class
o1 == o2 : TRUE
o1 != o2 : FALSE
o1 === o2 : FALSE
o1 !== o2 : TRUE

Two references to the same instance
o1 == o2 : TRUE
o1 != o2 : FALSE
o1 === o2 : TRUE
o1 !== o2 : FALSE

Instances of two different classes
o1 == o2 : FALSE
o1 != o2 : TRUE
o1 === o2 : FALSE
o1 !== o2 : TRUE

 Note:

 Extensions can define own rules for their objects comparison
 (==).

 Late Static Bindings

 PHP implements a feature called late static bindings which
 can be used to reference the called class in a context of static inheritance.

 More precisely, late static bindings work by storing the class named in the
 last "non-forwarding call". In case of static method calls, this is the
 class explicitly named (usually the one on the left of the
 ::
 operator); in case of non static method calls, it is the class of the object. A
 "forwarding call" is a static one that is introduced by self::,
 parent::, static::, or, if going
 up in the class hierarchy, forward_static_call().

 The function get_called_class() can be used to retrieve
 a string with the name of the called class and static::
 introduces its scope.

 This feature was named "late static bindings" with an internal perspective in
 mind. "Late binding" comes from the fact that static::
 will not be resolved using the class where the method is defined but it will
 rather be computed using runtime information.

 It was also called a "static binding" as it can be used for (but is not
 limited to) static method calls.

 Limitations of self::

 Static references to the current class like self:: or
 __CLASS__ are resolved using the class in which the
 function belongs, as in where it was defined:

 Example #1 self:: usage

<?php
class A {
 public static function who() {
 echo __CLASS__;
 }
 public static function test() {
 self::who();
 }
}

class B extends A {
 public static function who() {
 echo __CLASS__;
 }
}

B::test();
?>

 The above example will output:

A

 Late Static Bindings' usage

 Late static bindings tries to solve that limitation by introducing a
 keyword that references the class that was initially called at runtime.
 Basically, a keyword that would allow referencing
 B from test() in the previous
 example. It was decided not to introduce a new keyword but rather use
 static that was already reserved.

 Example #2 static:: simple usage

<?php
class A {
 public static function who() {
 echo __CLASS__;
 }
 public static function test() {
 static::who(); // Here comes Late Static Bindings
 }
}

class B extends A {
 public static function who() {
 echo __CLASS__;
 }
}

B::test();
?>

 The above example will output:

B

 Note:

 In non-static contexts, the called class will be the class of the object
 instance. Since $this-> will try to call private
 methods from the same scope, using static:: may give
 different results. Another difference is that static::
 can only refer to static properties.

 Example #3 static:: usage in a non-static context

<?php
class A {
 private function foo() {
 echo "success!\n";
 }
 public function test() {
 $this->foo();
 static::foo();
 }
}

class B extends A {
 /* foo() will be copied to B, hence its scope will still be A and
 * the call be successful */
}

class C extends A {
 private function foo() {
 /* original method is replaced; the scope of the new one is C */
 }
}

$b = new B();
$b->test();
$c = new C();
$c->test(); //fails
?>

 The above example will output:

success!
success!
success!

Fatal error: Call to private method C::foo() from context 'A' in /tmp/test.php on line 9

 Note:

 Late static bindings' resolution will stop at a fully resolved static call
 with no fallback. On the other hand, static calls using keywords like
 parent:: or self:: will forward the
 calling information.

 Example #4 Forwarding and non-forwarding calls

<?php
class A {
 public static function foo() {
 static::who();
 }

 public static function who() {
 echo __CLASS__."\n";
 }
}

class B extends A {
 public static function test() {
 A::foo();
 parent::foo();
 self::foo();
 }

 public static function who() {
 echo __CLASS__."\n";
 }
}
class C extends B {
 public static function who() {
 echo __CLASS__."\n";
 }
}

C::test();
?>

 The above example will output:

A
C
C

 Objects and references

 One of the key-points of PHP OOP that is often mentioned is that
 "objects are passed by references by default". This is not completely true.
 This section rectifies that general thought using some examples.

 A PHP reference is an alias, which allows two different variables to write
 to the same value. In PHP, an object variable doesn't contain the object
 itself as value. It only contains an object identifier which allows
 object accessors to find the actual object. When an object is sent by
 argument, returned or assigned to another variable, the different variables
 are not aliases: they hold a copy of the identifier, which points to the same
 object.

 Example #1 References and Objects

<?php
class A {
 public $foo = 1;
}

$a = new A;
$b = $a; // $a and $b are copies of the same identifier
 // ($a) = ($b) = <id>
$b->foo = 2;
echo $a->foo."\n";

$c = new A;
$d = &$c; // $c and $d are references
 // ($c,$d) = <id>

$d->foo = 2;
echo $c->foo."\n";

$e = new A;

function foo($obj) {
 // ($obj) = ($e) = <id>
 $obj->foo = 2;
}

foo($e);
echo $e->foo."\n";

?>

 The above example will output:

2
2
2

 Serializing objects - objects in sessions

 serialize() returns a string containing a
 byte-stream representation of any value that can be stored in
 PHP. unserialize() can use this string to
 recreate the original variable values. Using serialize to
 save an object will save all variables in an object. The
 methods in an object will not be saved, only the name of
 the class.

 In order to be able to unserialize() an object, the
 class of that object needs to be defined. That is, if you have an object
 of class A and serialize this, you'll
 get a string that refers to class A and contains all values of variables
 contained in it. If you want to be able to unserialize
 this in another file, an object of class A, the
 definition of class A must be present in that file first.
 This can be done for example by storing the class definition of class A
 in an include file and including this file or making use of the
 spl_autoload_register() function.

<?php
// A.php:

 class A {
 public $one = 1;

 public function show_one() {
 echo $this->one;
 }
 }

// page1.php:

 include "A.php";

 $a = new A;
 $s = serialize($a);
 // store $s somewhere where page2.php can find it.
 file_put_contents('store', $s);

// page2.php:

 // this is needed for the unserialize to work properly.
 include "A.php";

 $s = file_get_contents('store');
 $a = unserialize($s);

 // now use the function show_one() of the $a object.
 $a->show_one();
?>

 It is strongly recommended that if an application serializes objects, for use
 later in the application, that the application includes the class definition
 for that object throughout the application. Not doing so might result in an
 object being unserialized without a class definition, which will result in
 PHP giving the object a class of __PHP_Incomplete_Class_Name,
 which has no methods and would render the object useless.

 So if in the example above $a became part of a session
 by adding a new key to the $_SESSION superglobal array, you should include the
 file A.php on all of your pages, not only page1.php
 and page2.php.

 Beyond the above advice, note that you can also hook into the serialization
 and unserialization events on an object using the
 __sleep() and
 __wakeup() methods. Using
 __sleep() also allows you to only
 serialize a subset of the object's properties.

 Covariance and Contravariance

 In PHP 7.2.0, partial contravariance was introduced by removing type restrictions
 on parameters in a child method. As of PHP 7.4.0, full covariance and contravariance
 support was added.

 Covariance allows a child's method to return a more specific type than the return type
 of its parent's method. Whereas, contravariance allows a parameter type to be less
 specific in a child method, than that of its parent.

 A type declaration is considered more specific in the following case:

 	

 A type is removed from a
 union type

 	

 A type is added to an
 intersection type

 	

 A class type is changed to a child class type

 	

 iterable is changed to array or Traversable

 A type class is considered less specific if the opposite is true.

 Covariance

 To illustrate how covariance works, a simple abstract parent class, Animal
 is created. Animal will be extended by children classes,
 Cat, and Dog.

<?php

abstract class Animal
{
 protected string $name;

 public function __construct(string $name)
 {
 $this->name = $name;
 }

 abstract public function speak();
}

class Dog extends Animal
{
 public function speak()
 {
 echo $this->name . " barks";
 }
}

class Cat extends Animal
{
 public function speak()
 {
 echo $this->name . " meows";
 }
}

 Note that there aren't any methods which return values in this example. A few factories
 will be added which return a new object of class type Animal,
 Cat, or Dog.

<?php

interface AnimalShelter
{
 public function adopt(string $name): Animal;
}

class CatShelter implements AnimalShelter
{
 public function adopt(string $name): Cat // instead of returning class type Animal, it can return class type Cat
 {
 return new Cat($name);
 }
}

class DogShelter implements AnimalShelter
{
 public function adopt(string $name): Dog // instead of returning class type Animal, it can return class type Dog
 {
 return new Dog($name);
 }
}

$kitty = (new CatShelter)->adopt("Ricky");
$kitty->speak();
echo "\n";

$doggy = (new DogShelter)->adopt("Mavrick");
$doggy->speak();

 The above example will output:

Ricky meows
Mavrick barks

 Contravariance

 Continuing with the previous example with the classes Animal,
 Cat, and Dog, a class called
 Food and AnimalFood will be included, and
 a method eat(AnimalFood $food) is added to the Animal
 abstract class.

<?php

class Food {}

class AnimalFood extends Food {}

abstract class Animal
{
 protected string $name;

 public function __construct(string $name)
 {
 $this->name = $name;
 }

 public function eat(AnimalFood $food)
 {
 echo $this->name . " eats " . get_class($food);
 }
}

 In order to see the behavior of contravariance, the
 eat method is overridden in the Dog class to allow
 any Food type object. The Cat class remains unchanged.

<?php

class Dog extends Animal
{
 public function eat(Food $food) {
 echo $this->name . " eats " . get_class($food);
 }
}

 The next example will show the behavior of contravariance.

<?php

$kitty = (new CatShelter)->adopt("Ricky");
$catFood = new AnimalFood();
$kitty->eat($catFood);
echo "\n";

$doggy = (new DogShelter)->adopt("Mavrick");
$banana = new Food();
$doggy->eat($banana);

 The above example will output:

Ricky eats AnimalFood
Mavrick eats Food

 But what happens if $kitty tries to eat() the
 $banana?

$kitty->eat($banana);

 The above example will output:

Fatal error: Uncaught TypeError: Argument 1 passed to Animal::eat() must be an instance of AnimalFood, instance of Food given

 OOP Changelog

 Changes to the PHP OOP model are logged here. Descriptions and other notes regarding
 these features are documented within the OOP model documentation.

 	Version
 	Description

 	8.1.0
 	
 Added: Support for the final modifier for class constants. Also, interface constants become overridable by default.

 	8.0.0
 	
 Added: Support for the nullsafe operator ?-> to access properties and methods on objects that may be null.

 	7.4.0
 	
 Changed: It is now possible to throw exception within
 __toString().

 	7.4.0
 	
 Added: Support for limited return type covariance and argument
 type contravariance. Full variance support is only available if
 autoloading is used. Inside a single file only non-cyclic type
 references are possible.

 	7.4.0
 	
 Added: It is now possible to type class properties.

 	7.3.0
 	
 Incompatibility: Argument unpacking of
 Traversables with non-int keys is no longer
 supported. This behaviour was not intended and thus has been removed.

 	7.3.0
 	
 Incompatibility: In previous versions it was possible to separate the
 static properties by assigning a reference. This has been removed.

 	7.3.0
 	
 Changed: The instanceof
 operator now allows literals as the first operand, in which case the
 result is always false.

 	7.2.0
 	
 Deprecated: The __autoload() method has been
 deprecated in favour of spl_autoload_register().

 	7.2.0
 	
 Changed: The following name cannot be used to name classes, interfaces,
 or traits: object.

 	7.2.0
 	
 Changed: A trailing comma can now be added to the group-use syntax
 for namespaces.

 	7.2.0
 	
 Changed: Parameter type widening. Parameter types from overridden
 methods and from interface implementations may now be omitted.

 	7.2.0
 	
 Changed: Abstract methods can now be overridden when an abstract class
 extends another abstract class.

 	7.1.0
 	
 Changed: The following names cannot be used to name classes, interfaces,
 or traits: void and iterable.

 	7.1.0
 	
 Added: It is now possible to specify the
 visibility of
 class constants.

 	7.0.0
 	
 Deprecated: Static calls
 to methods that are not declared static.

 	7.0.0
 	
 Deprecated: PHP 4 style
 constructor. I.e. methods that have the same name as the class
 they are defined in.

 	7.0.0
 	
 Added: Group use declaration: classes, functions
 and constants being imported from the same namespace can now be grouped
 together in a single use statement.

 	7.0.0
 	
 Added: Support for
 anonymous classes
 has been added via new class.

 	7.0.0
 	
 Incompatibility: Iterating over a non-Traversable
 object will now have the same behaviour as iterating over by-reference
 arrays.

 	7.0.0
 	
 Changed: Defining (compatible) properties in two used
 traits no longer
 triggers an error.

 	5.6.0
 	
 Added: The __debugInfo() method.

 	5.5.0
 	
 Added: The ::class magic constant.

 	5.5.0
 	
 Added: finally to handle exceptions.

 	5.4.0
 	
 Added: traits.

 	5.4.0
 	
 Changed: If an abstract class
 defines a signature for the
 constructor it will now be enforced.

 	5.3.3
 	
 Changed: Methods with the same name as the last element of
 a namespaced
 class name will no longer be treated as constructor. This change doesn't
 affect non-namespaced classes.

 	5.3.0
 	
 Changed: Classes that implement interfaces with methods that have default
 values in the prototype are no longer required to match the interface's default
 value.

 	5.3.0
 	
 Changed: It's now possible to reference the class using a variable (e.g.,
 echo $classname::constant;).
 The variable's value can not be a keyword (e.g., self,
 parent or static).

 	5.3.0
 	
 Changed: An E_WARNING level error is issued if
 the magic overloading
 methods are declared static.
 It also enforces the public visibility requirement.

 	5.3.0
 	
 Changed: Prior to 5.3.0, exceptions thrown in the
 __autoload() function could not be
 caught in the catch block, and
 would result in a fatal error. Exceptions now thrown in the __autoload function
 can be caught in the catch block, with
 one provison. If throwing a custom exception, then the custom exception class must
 be available. The __autoload function may be used recursively to autoload the
 custom exception class.

 	5.3.0
 	
 Added: The __callStatic method.

 	5.3.0
 	
 Added: heredoc
 and nowdoc
 support for class const and property definitions.
 Note: heredoc values must follow the same rules as double-quoted strings,
 (e.g. no variables within).

 	5.3.0
 	
 Added: Late Static Bindings.

 	5.3.0
 	
 Added: The __invoke() method.

 	5.2.0
 	
 Changed: The __toString()
 method was only called when it was directly combined with
 echo or print.
 But now, it is called in any string context (e.g. in
 printf() with %s modifier) but not
 in other types contexts (e.g. with %d modifier).
 As of PHP 5.2.0, converting objects without a
 __toString method to string
 emits a E_RECOVERABLE_ERROR level error.

 	5.1.3
 	
 Changed: In previous versions of PHP 5, the use of var
 was considered deprecated and would issue an E_STRICT
 level error. It's no longer deprecated, therefore does not emit the error.

 	5.1.0
 	
 Changed: The __set_state() static
 method is now called for classes exported by var_export().

 	5.1.0
 	
 Added: The __isset()
 and __unset() methods.

 Namespaces

Table of Contents
	Overview
	Namespaces
	Sub-namespaces
	Defining multiple namespaces in the same file
	Basics
	Namespaces and dynamic language features
	namespace keyword and __NAMESPACE__
	Aliasing and Importing
	Global space
	Fallback to global space
	Name resolution rules
	FAQ

 Namespaces overview

 (PHP 5 >= 5.3.0, PHP 7, PHP 8)

 What are namespaces? In the broadest definition namespaces are a way of encapsulating
 items. This can be seen as an abstract concept in many places. For example, in any
 operating system directories serve to group related files, and act as a namespace for
 the files within them. As a concrete example, the file foo.txt can
 exist in both directory /home/greg and in /home/other,
 but two copies of foo.txt cannot co-exist in the same directory. In
 addition, to access the foo.txt file outside of the
 /home/greg directory, we must prepend the directory name to the file
 name using the directory separator to get /home/greg/foo.txt. This
 same principle extends to namespaces in the programming world.

 In the PHP world, namespaces are designed to solve two problems that authors
 of libraries and applications encounter when creating re-usable code elements
 such as classes or functions:

 	

 Name collisions between code you create, and
 internal PHP classes/functions/constants or third-party classes/functions/constants.

 	

 Ability to alias (or shorten) Extra_Long_Names designed to alleviate the first problem,
 improving readability of source code.

 PHP Namespaces provide a way in which to group related classes, interfaces,
 functions and constants. Here is an example of namespace syntax in PHP:

 Example #1 Namespace syntax example

 <?php
namespace my\name; // see "Defining Namespaces" section

class MyClass {}
function myfunction() {}
const MYCONST = 1;

$a = new MyClass;
$c = new \my\name\MyClass; // see "Global Space" section

$a = strlen('hi'); // see "Using namespaces: fallback to global
 // function/constant" section

$d = namespace\MYCONST; // see "namespace operator and __NAMESPACE__
 // constant" section
$d = __NAMESPACE__ . '\MYCONST';
echo constant($d); // see "Namespaces and dynamic language features" section
?>

 Note:

 Namespace names are case-insensitive.

 Note:

 The Namespace name PHP, and compound names starting
 with this name (like PHP\Classes) are reserved for internal language use
 and should not be used in the userspace code.

 Defining namespaces

 (PHP 5 >= 5.3.0, PHP 7, PHP 8)

 Although any valid PHP code can be contained within a namespace, only the following
 types of code are affected by namespaces: classes (including abstracts and traits), interfaces, functions and constants.

 Namespaces are declared using the namespace
 keyword. A file containing a namespace must declare the namespace
 at the top of the file before any other code - with one exception: the
 declare keyword.

 Example #1 Declaring a single namespace

 <?php
namespace MyProject;

const CONNECT_OK = 1;
class Connection { /* ... */ }
function connect() { /* ... */ }

?>

 Note:

 Fully qualified names (i.e. names starting with a backslash) are not allowed in namespace
 declarations, because such constructs are interpreted as relative namespace expressions.

 The only code construct allowed before a namespace declaration is the
 declare statement, for defining encoding of a source file. In addition,
 no non-PHP code may precede a namespace declaration, including extra whitespace:

 Example #2 Declaring a single namespace

 <html>
<?php
namespace MyProject; // fatal error - namespace must be the first statement in the script
?>

 In addition, unlike any other PHP construct, the same namespace may be defined
 in multiple files, allowing splitting up of a namespace's contents across the filesystem.

 Declaring sub-namespaces

 (PHP 5 >= 5.3.0, PHP 7, PHP 8)

 Much like directories and files, PHP namespaces also contain the ability to specify
 a hierarchy of namespace names. Thus, a namespace name can be defined with
 sub-levels:

 Example #1 Declaring a single namespace with hierarchy

 <?php
namespace MyProject\Sub\Level;

const CONNECT_OK = 1;
class Connection { /* ... */ }
function connect() { /* ... */ }

?>

 The above example creates constant MyProject\Sub\Level\CONNECT_OK,
 class MyProject\Sub\Level\Connection and function
 MyProject\Sub\Level\connect.

 Defining multiple namespaces in the same file

 (PHP 5 >= 5.3.0, PHP 7, PHP 8)

 Multiple namespaces may also be declared in the same file. There are two allowed
 syntaxes.

 Example #1 Declaring multiple namespaces, simple combination syntax

 <?php
namespace MyProject;

const CONNECT_OK = 1;
class Connection { /* ... */ }
function connect() { /* ... */ }

namespace AnotherProject;

const CONNECT_OK = 1;
class Connection { /* ... */ }
function connect() { /* ... */ }
?>

 This syntax is not recommended for combining namespaces into a single file.
 Instead it is recommended to use the alternate bracketed syntax.

 Example #2 Declaring multiple namespaces, bracketed syntax

 <?php
namespace MyProject {

const CONNECT_OK = 1;
class Connection { /* ... */ }
function connect() { /* ... */ }
}

namespace AnotherProject {

const CONNECT_OK = 1;
class Connection { /* ... */ }
function connect() { /* ... */ }
}
?>

 It is strongly discouraged as a coding practice to combine multiple namespaces into
 the same file. The primary use case is to combine multiple PHP scripts into the same
 file.

 To combine global non-namespaced code with namespaced code, only bracketed syntax is
 supported. Global code should be
 encased in a namespace statement with no namespace name as in:

 Example #3 Declaring multiple namespaces and unnamespaced code

 <?php
namespace MyProject {

const CONNECT_OK = 1;
class Connection { /* ... */ }
function connect() { /* ... */ }
}

namespace { // global code
session_start();
$a = MyProject\connect();
echo MyProject\Connection::start();
}
?>

 No PHP code may exist outside of the namespace brackets except for an opening
 declare statement.

 Example #4 Declaring multiple namespaces and unnamespaced code

 <?php
declare(encoding='UTF-8');
namespace MyProject {

const CONNECT_OK = 1;
class Connection { /* ... */ }
function connect() { /* ... */ }
}

namespace { // global code
session_start();
$a = MyProject\connect();
echo MyProject\Connection::start();
}
?>

 Using namespaces: Basics

 (PHP 5 >= 5.3.0, PHP 7, PHP 8)

 Before discussing the use of namespaces, it is important to understand how PHP
 knows which namespaced element your code is requesting. A simple analogy can be made
 between PHP namespaces and a filesystem. There are three ways to access a file in a
 file system:

 	

 Relative file name like foo.txt. This resolves to
 currentdirectory/foo.txt where currentdirectory is the
 directory currently occupied. So if the current directory is
 /home/foo, the name resolves to /home/foo/foo.txt.

 	

 Relative path name like subdirectory/foo.txt. This resolves
 to currentdirectory/subdirectory/foo.txt.

 	

 Absolute path name like /main/foo.txt. This resolves
 to /main/foo.txt.

 The same principle can be applied to namespaced elements in PHP. For
 example, a class name can be referred to in three ways:

 	

 Unqualified name, or an unprefixed class name like
 $a = new foo(); or
 foo::staticmethod();. If the current namespace is
 currentnamespace, this resolves to
 currentnamespace\foo. If
 the code is global, non-namespaced code, this resolves to foo.

 One caveat: unqualified names for functions and constants will
 resolve to global functions and constants if the namespaced function or constant
 is not defined. See Using namespaces:
 fallback to global function/constant for details.

 	

 Qualified name, or a prefixed class name like
 $a = new subnamespace\foo(); or
 subnamespace\foo::staticmethod();. If the current namespace is
 currentnamespace, this resolves to
 currentnamespace\subnamespace\foo. If
 the code is global, non-namespaced code, this resolves to subnamespace\foo.

 	

 Fully qualified name, or a prefixed name with global prefix operator like
 $a = new \currentnamespace\foo(); or
 \currentnamespace\foo::staticmethod();. This always resolves
 to the literal name specified in the code, currentnamespace\foo.

 Here is an example of the three kinds of syntax in actual code:

 file1.php

 <?php
namespace Foo\Bar\subnamespace;

const FOO = 1;
function foo() {}
class foo
{
 static function staticmethod() {}
}
?>

 file2.php

 <?php
namespace Foo\Bar;
include 'file1.php';

const FOO = 2;
function foo() {}
class foo
{
 static function staticmethod() {}
}

/* Unqualified name */
foo(); // resolves to function Foo\Bar\foo
foo::staticmethod(); // resolves to class Foo\Bar\foo, method staticmethod
echo FOO; // resolves to constant Foo\Bar\FOO

/* Qualified name */
subnamespace\foo(); // resolves to function Foo\Bar\subnamespace\foo
subnamespace\foo::staticmethod(); // resolves to class Foo\Bar\subnamespace\foo,
 // method staticmethod
echo subnamespace\FOO; // resolves to constant Foo\Bar\subnamespace\FOO

/* Fully qualified name */
\Foo\Bar\foo(); // resolves to function Foo\Bar\foo
\Foo\Bar\foo::staticmethod(); // resolves to class Foo\Bar\foo, method staticmethod
echo \Foo\Bar\FOO; // resolves to constant Foo\Bar\FOO
?>

 Note that to access any global
 class, function or constant, a fully qualified name can be used, such as
 \strlen() or \Exception or
 \INI_ALL.

 Example #1 Accessing global classes, functions and constants from within a namespace

 <?php
namespace Foo;

function strlen() {}
const INI_ALL = 3;
class Exception {}

$a = \strlen('hi'); // calls global function strlen
$b = \INI_ALL; // accesses global constant INI_ALL
$c = new \Exception('error'); // instantiates global class Exception
?>

 Namespaces and dynamic language features

 (PHP 5 >= 5.3.0, PHP 7, PHP 8)

 PHP's implementation of namespaces is influenced by its dynamic nature as a programming
 language. Thus, to convert code like the following example into namespaced code:

 Example #1 Dynamically accessing elements

 example1.php:

 <?php
class classname
{
 function __construct()
 {
 echo __METHOD__,"\n";
 }
}
function funcname()
{
 echo __FUNCTION__,"\n";
}
const constname = "global";

$a = 'classname';
$obj = new $a; // prints classname::__construct
$b = 'funcname';
$b(); // prints funcname
echo constant('constname'), "\n"; // prints global
?>

 One must use the fully qualified name (class name with namespace prefix).
 Note that because there is no difference between a qualified and a fully qualified Name
 inside a dynamic class name, function name, or constant name, the leading backslash is
 not necessary.

 Example #2 Dynamically accessing namespaced elements

 <?php
namespace namespacename;
class classname
{
 function __construct()
 {
 echo __METHOD__,"\n";
 }
}
function funcname()
{
 echo __FUNCTION__,"\n";
}
const constname = "namespaced";

/* note that if using double quotes, "\\namespacename\\classname" must be used */
$a = '\namespacename\classname';
$obj = new $a; // prints namespacename\classname::__construct
$a = 'namespacename\classname';
$obj = new $a; // also prints namespacename\classname::__construct
$b = 'namespacename\funcname';
$b(); // prints namespacename\funcname
$b = '\namespacename\funcname';
$b(); // also prints namespacename\funcname
echo constant('\namespacename\constname'), "\n"; // prints namespaced
echo constant('namespacename\constname'), "\n"; // also prints namespaced
?>

 Be sure to read the note about
 escaping namespace names in strings.

 The namespace keyword and __NAMESPACE__ magic constant

 (PHP 5 >= 5.3.0, PHP 7, PHP 8)

 PHP supports two ways of abstractly accessing elements within the current namespace,
 the __NAMESPACE__ magic constant, and the namespace
 keyword.

 The value of __NAMESPACE__ is a string that contains the current
 namespace name. In global, un-namespaced code, it contains an empty string.

 Example #1 __NAMESPACE__ example, namespaced code

 <?php
namespace MyProject;

echo '"', __NAMESPACE__, '"'; // outputs "MyProject"
?>

 Example #2 __NAMESPACE__ example, global code

 <?php

echo '"', __NAMESPACE__, '"'; // outputs ""
?>

 The __NAMESPACE__ constant is useful for dynamically constructing
 names, for instance:

 Example #3 using __NAMESPACE__ for dynamic name construction

 <?php
namespace MyProject;

function get($classname)
{
 $a = __NAMESPACE__ . '\\' . $classname;
 return new $a;
}
?>

 The namespace keyword can be used to explicitly request
 an element from the current namespace or a sub-namespace. It is the namespace
 equivalent of the self operator for classes.

 Example #4 the namespace operator, inside a namespace

 <?php
namespace MyProject;

use blah\blah as mine; // see "Using namespaces: Aliasing/Importing"

blah\mine(); // calls function MyProject\blah\mine()
namespace\blah\mine(); // calls function MyProject\blah\mine()

namespace\func(); // calls function MyProject\func()
namespace\sub\func(); // calls function MyProject\sub\func()
namespace\cname::method(); // calls static method "method" of class MyProject\cname
$a = new namespace\sub\cname(); // instantiates object of class MyProject\sub\cname
$b = namespace\CONSTANT; // assigns value of constant MyProject\CONSTANT to $b
?>

 Example #5 the namespace operator, in global code

 <?php

namespace\func(); // calls function func()
namespace\sub\func(); // calls function sub\func()
namespace\cname::method(); // calls static method "method" of class cname
$a = new namespace\sub\cname(); // instantiates object of class sub\cname
$b = namespace\CONSTANT; // assigns value of constant CONSTANT to $b
?>

 Using namespaces: Aliasing/Importing

 (PHP 5 >= 5.3.0, PHP 7, PHP 8)

 The ability to refer to an external fully qualified name with an alias, or importing,
 is an important feature of namespaces. This is similar to the
 ability of unix-based filesystems to create symbolic links to a file or to a directory.

 PHP can alias(/import) constants, functions, classes, interfaces, traits, enums and namespaces.

 Aliasing is accomplished with the use operator.
 Here is an example showing all 5 kinds of importing:

 Example #1 importing/aliasing with the use operator

 <?php
namespace foo;
use My\Full\Classname as Another;

// this is the same as use My\Full\NSname as NSname
use My\Full\NSname;

// importing a global class
use ArrayObject;

// importing a function
use function My\Full\functionName;

// aliasing a function
use function My\Full\functionName as func;

// importing a constant
use const My\Full\CONSTANT;

$obj = new namespace\Another; // instantiates object of class foo\Another
$obj = new Another; // instantiates object of class My\Full\Classname
NSname\subns\func(); // calls function My\Full\NSname\subns\func
$a = new ArrayObject(array(1)); // instantiates object of class ArrayObject
// without the "use ArrayObject" we would instantiate an object of class foo\ArrayObject
func(); // calls function My\Full\functionName
echo CONSTANT; // echoes the value of My\Full\CONSTANT
?>

 Note that for namespaced names (fully qualified namespace names containing
 namespace separator, such as Foo\Bar as opposed to global names that
 do not, such as FooBar), the leading backslash is unnecessary and not
 recommended, as import names
 must be fully qualified, and are not processed relative to the current namespace.

 PHP additionally supports a convenience shortcut to place multiple use statements
 on the same line

 Example #2 importing/aliasing with the use operator, multiple use statements combined

 <?php
use My\Full\Classname as Another, My\Full\NSname;

$obj = new Another; // instantiates object of class My\Full\Classname
NSname\subns\func(); // calls function My\Full\NSname\subns\func
?>

 Importing is performed at compile-time, and so does not affect dynamic class, function
 or constant names.

 Example #3 Importing and dynamic names

 <?php
use My\Full\Classname as Another, My\Full\NSname;

$obj = new Another; // instantiates object of class My\Full\Classname
$a = 'Another';
$obj = new $a; // instantiates object of class Another
?>

 In addition, importing only affects unqualified and qualified names. Fully qualified
 names are absolute, and unaffected by imports.

 Example #4 Importing and fully qualified names

 <?php
use My\Full\Classname as Another, My\Full\NSname;

$obj = new Another; // instantiates object of class My\Full\Classname
$obj = new \Another; // instantiates object of class Another
$obj = new Another\thing; // instantiates object of class My\Full\Classname\thing
$obj = new \Another\thing; // instantiates object of class Another\thing
?>

 Scoping rules for importing

 The use keyword must be declared in the
 outermost scope of a file (the global scope) or inside namespace
 declarations. This is because the importing is done at compile
 time and not runtime, so it cannot be block scoped. The following
 example will show an illegal use of the use
 keyword:

 Example #5 Illegal importing rule

<?php
namespace Languages;

function toGreenlandic()
{
 use Languages\Danish;

 // ...
}
?>

 Note:

 Importing rules are per file basis, meaning included files will
 NOT inherit the parent file's importing rules.

 Group use declarations

 Classes, functions and constants being imported from
 the same namespace can be grouped together in a single use
 statement.

<?php

use some\namespace\ClassA;
use some\namespace\ClassB;
use some\namespace\ClassC as C;

use function some\namespace\fn_a;
use function some\namespace\fn_b;
use function some\namespace\fn_c;

use const some\namespace\ConstA;
use const some\namespace\ConstB;
use const some\namespace\ConstC;

// is equivalent to the following groupped use declaration
use some\namespace\{ClassA, ClassB, ClassC as C};
use function some\namespace\{fn_a, fn_b, fn_c};
use const some\namespace\{ConstA, ConstB, ConstC};

 Global space

 (PHP 5 >= 5.3.0, PHP 7, PHP 8)

 Without any namespace definition, all class and function definitions are
 placed into the global space - as it was in PHP before namespaces were
 supported. Prefixing a name with \ will specify that
 the name is required from the global space even in the context of the
 namespace.

 Example #1 Using global space specification

 <?php
namespace A\B\C;

/* This function is A\B\C\fopen */
function fopen() {
 /* ... */
 $f = \fopen(...); // call global fopen
 return $f;
}
?>

 Using namespaces: fallback to the global space for functions and constants

 (PHP 5 >= 5.3.0, PHP 7, PHP 8)

 Inside a namespace, when PHP encounters an unqualified Name in a class name, function or
 constant context, it resolves these with different priorities. Class names always
 resolve to the current namespace name. Thus to access internal or non-namespaced
 user classes, one must refer to them with their fully qualified Name as in:

 Example #1 Accessing global classes inside a namespace

 <?php
namespace A\B\C;
class Exception extends \Exception {}

$a = new Exception('hi'); // $a is an object of class A\B\C\Exception
$b = new \Exception('hi'); // $b is an object of class Exception

$c = new ArrayObject; // fatal error, class A\B\C\ArrayObject not found
?>

 For functions and constants, PHP will fall back to global functions or constants
 if a namespaced function or constant does not exist.

 Example #2 global functions/constants fallback inside a namespace

 <?php
namespace A\B\C;

const E_ERROR = 45;
function strlen($str)
{
 return \strlen($str) - 1;
}

echo E_ERROR, "\n"; // prints "45"
echo INI_ALL, "\n"; // prints "7" - falls back to global INI_ALL

echo strlen('hi'), "\n"; // prints "1"
if (is_array('hi')) { // prints "is not array"
 echo "is array\n";
} else {
 echo "is not array\n";
}
?>

 Name resolution rules

 (PHP 5 >= 5.3.0, PHP 7, PHP 8)

 For the purposes of these resolution rules, here are some important definitions:

 Namespace name definitions

 	Unqualified name

 	

 This is an identifier without a namespace separator, such as Foo

 	Qualified name

 	

 This is an identifier with a namespace separator, such as Foo\Bar

 	Fully qualified name

 	

 This is an identifier with a namespace separator that begins with a
 namespace separator, such as \Foo\Bar. The namespace
 \Foo is also a fully qualified name.

 	Relative name

 	

 This is an identifier starting with namespace, such as
 namespace\Foo\Bar.

 Names are resolved following these resolution rules:

 	

 Fully qualified names always resolve to the name without leading namespace separator.
 For instance \A\B resolves to A\B.

 	

 Relative names always resolve to the name with namespace replaced by
 the current namespace. If the name occurs in the global namespace, the
 namespace\ prefix is stripped. For example namespace\A
 inside namespace X\Y resolves to X\Y\A. The same name
 inside the global namespace resolves to A.

 	

 For qualified names the first segment of the name is translated according to the current
 class/namespace import table. For example, if the namespace A\B\C is
 imported as C, the name C\D\E is translated to
 A\B\C\D\E.

 	

 For qualified names, if no import rule applies, the current namespace is prepended to the
 name. For example, the name C\D\E inside namespace A\B,
 resolves to A\B\C\D\E.

 	

 For unqualified names, the name is translated according to the current import table for the
 respective symbol type. This means that class-like names are translated according to the
 class/namespace import table, function names according to the function import table and
 constants according to the constant import table. For example, after
 use A\B\C; a usage such as new C() resolves to the name
 A\B\C(). Similarly, after use function A\B\foo; a usage
 such as foo() resolves to the name A\B\foo.

 	

 For unqualified names, if no import rule applies and the name refers to a class-like symbol,
 the current namespace is prepended. For example new C() inside namespace
 A\B resolves to name A\B\C.

 	

 For unqualified names, if no import rule applies and the name refers to a function or constant
 and the code is outside the global namespace, the name is resolved at runtime.
 Assuming the code is in namespace A\B, here is how a call to function
 foo() is resolved:

 	

 It looks for a function from the current namespace:
 A\B\foo().

 	

 It tries to find and call the global function
 foo().

 Example #1 Name resolutions illustrated

<?php
namespace A;
use B\D, C\E as F;

// function calls

foo(); // first tries to call "foo" defined in namespace "A"
 // then calls global function "foo"

\foo(); // calls function "foo" defined in global scope

my\foo(); // calls function "foo" defined in namespace "A\my"

F(); // first tries to call "F" defined in namespace "A"
 // then calls global function "F"

// class references

new B(); // creates object of class "B" defined in namespace "A"
 // if not found, it tries to autoload class "A\B"

new D(); // using import rules, creates object of class "D" defined in namespace "B"
 // if not found, it tries to autoload class "B\D"

new F(); // using import rules, creates object of class "E" defined in namespace "C"
 // if not found, it tries to autoload class "C\E"

new \B(); // creates object of class "B" defined in global scope
 // if not found, it tries to autoload class "B"

new \D(); // creates object of class "D" defined in global scope
 // if not found, it tries to autoload class "D"

new \F(); // creates object of class "F" defined in global scope
 // if not found, it tries to autoload class "F"

// static methods/namespace functions from another namespace

B\foo(); // calls function "foo" from namespace "A\B"

B::foo(); // calls method "foo" of class "B" defined in namespace "A"
 // if class "A\B" not found, it tries to autoload class "A\B"

D::foo(); // using import rules, calls method "foo" of class "D" defined in namespace "B"
 // if class "B\D" not found, it tries to autoload class "B\D"

\B\foo(); // calls function "foo" from namespace "B"

\B::foo(); // calls method "foo" of class "B" from global scope
 // if class "B" not found, it tries to autoload class "B"

// static methods/namespace functions of current namespace

A\B::foo(); // calls method "foo" of class "B" from namespace "A\A"
 // if class "A\A\B" not found, it tries to autoload class "A\A\B"

\A\B::foo(); // calls method "foo" of class "B" from namespace "A"
 // if class "A\B" not found, it tries to autoload class "A\B"
?>

 FAQ: things you need to know about namespaces

 (PHP 5 >= 5.3.0, PHP 7, PHP 8)

 This FAQ is split into two sections: common questions, and some specifics of
 implementation that are helpful to understand fully.

 First, the common questions.

 	

 If I don't use namespaces, should
 I care about any of this?

 	

 How do I use internal or global
 classes in a namespace?

 	

 How do I use namespaces classes
 functions, or constants in their own namespace?

 	

 How does a name like \my\name or \name
 resolve?

 	

 How does a name like
 my\name resolve?

 	

 How does an unqualified class name
 like name resolve?

 	

 How does an unqualified function
 name or unqualified constant name
 like name resolve?

 There are a few implementation details of the namespace implementations
 that are helpful to understand.

 	

 Import names must not conflict with
 classes defined in the same file.

 	

 Nested namespaces are not allowed.

 	

 Dynamic namespace names (quoted
 identifiers) should escape backslash.

 	

 Undefined Constants referenced
 using any backslash die with fatal error

 	

 Cannot override special
 constants null, true or false

 If I don't use namespaces, should I care about any of this?

 No. Namespaces do not affect any existing code in any way, or any
 as-yet-to-be-written code that does not contain namespaces. You can
 write this code if you wish:

 Example #1 Accessing global classes outside a namespace

<?php
$a = new \stdClass;
?>

 This is functionally equivalent to:

 Example #2 Accessing global classes outside a namespace

<?php
$a = new stdClass;
?>

 How do I use internal or global classes in a namespace?

 Example #3 Accessing internal classes in namespaces

<?php
namespace foo;
$a = new \stdClass;

function test(\ArrayObject $parameter_type_example = null) {}

$a = \DirectoryIterator::CURRENT_AS_FILEINFO;

// extending an internal or global class
class MyException extends \Exception {}
?>

 How do I use namespaces classes, functions, or constants in their own
 namespace?

 Example #4 Accessing internal classes, functions or constants in namespaces

<?php
namespace foo;

class MyClass {}

// using a class from the current namespace as a parameter type
function test(MyClass $parameter_type_example = null) {}
// another way to use a class from the current namespace as a parameter type
function test(\foo\MyClass $parameter_type_example = null) {}

// extending a class from the current namespace
class Extended extends MyClass {}

// accessing a global function
$a = \globalfunc();

// accessing a global constant
$b = \INI_ALL;
?>

 How does a name like \my\name or \name
 resolve?

 Names that begin with a \ always resolve to what they
 look like, so \my\name is in fact my\name,
 and \Exception is Exception.

 Example #5 Fully Qualified names

<?php
namespace foo;
$a = new \my\name(); // instantiates "my\name" class
echo \strlen('hi'); // calls function "strlen"
$a = \INI_ALL; // $a is set to the value of constant "INI_ALL"
?>

 How does a name like my\name resolve?

 Names that contain a backslash but do not begin with a backslash like
 my\name can be resolved in 2 different ways.

 If there is
 an import statement that aliases another name to my, then
 the import alias is applied to the my in my\name.

 Otherwise, the current namespace name is prepended to my\name.

 Example #6 Qualified names

<?php
namespace foo;
use blah\blah as foo;

$a = new my\name(); // instantiates "foo\my\name" class
foo\bar::name(); // calls static method "name" in class "blah\blah\bar"
my\bar(); // calls function "foo\my\bar"
$a = my\BAR; // sets $a to the value of constant "foo\my\BAR"
?>

 How does an unqualified class name like name resolve?

 Class names that do not contain a backslash like
 name can be resolved in 2 different ways.

 If there is
 an import statement that aliases another name to name, then
 the import alias is applied.

 Otherwise, the current namespace name is prepended to name.

 Example #7 Unqualified class names

<?php
namespace foo;
use blah\blah as foo;

$a = new name(); // instantiates "foo\name" class
foo::name(); // calls static method "name" in class "blah\blah"
?>

 How does an unqualified function name or unqualified constant name
 like name resolve?

 Function or constant names that do not contain a backslash like
 name can be resolved in 2 different ways.

 First, the current namespace name is prepended to name.

 Finally, if the constant or function name does not exist
 in the current namespace, a global constant or function name
 is used if it exists.

 Example #8 Unqualified function or constant names

<?php
namespace foo;
use blah\blah as foo;

const FOO = 1;

function my() {}
function foo() {}
function sort(&$a)
{
 \sort($a); // calls the global function "sort"
 $a = array_flip($a);
 return $a;
}

my(); // calls "foo\my"
$a = strlen('hi'); // calls global function "strlen" because "foo\strlen" does not exist
$arr = array(1,3,2);
$b = sort($arr); // calls function "foo\sort"
$c = foo(); // calls function "foo\foo" - import is not applied

$a = FOO; // sets $a to value of constant "foo\FOO" - import is not applied
$b = INI_ALL; // sets $b to value of global constant "INI_ALL"
?>

 Import names must not conflict with classes defined in the same file.

 The following script combinations are legal:

 file1.php

 <?php
namespace my\stuff;
class MyClass {}
?>

 another.php

 <?php
namespace another;
class thing {}
?>

 file2.php

 <?php
namespace my\stuff;
include 'file1.php';
include 'another.php';

use another\thing as MyClass;
$a = new MyClass; // instantiates class "thing" from namespace another
?>

 There is no name conflict, even though the class MyClass exists
 within the my\stuff namespace, because the MyClass definition is
 in a separate file. However, the next example causes a fatal error on name conflict
 because MyClass is defined in the same file as the use statement.

 <?php
namespace my\stuff;
use another\thing as MyClass;
class MyClass {} // fatal error: MyClass conflicts with import statement
$a = new MyClass;
?>

 Nested namespaces are not allowed.

 PHP does not allow nesting namespaces

 <?php
namespace my\stuff {
 namespace nested {
 class foo {}
 }
}
?>

 However, it is easy to simulate nested namespaces like so:

 <?php
namespace my\stuff\nested {
 class foo {}
}
?>

 Dynamic namespace names (quoted identifiers) should escape backslash

 It is very important to realize that because the backslash is used as an escape character
 within strings, it should always be doubled when used inside a string. Otherwise
 there is a risk of unintended consequences:

 Example #9 Dangers of using namespaced names inside a double-quoted string

 <?php
$a = "dangerous\name"; // \n is a newline inside double quoted strings!
$obj = new $a;

$a = 'not\at\all\dangerous'; // no problems here.
$obj = new $a;
?>

 Inside a single-quoted string, the backslash escape sequence is much safer to use, but it
 is still recommended practice to escape backslashes in all strings as a best practice.

 Undefined Constants referenced using any backslash die with fatal error

 Any undefined constant that is unqualified like FOO will
 produce a notice explaining that PHP assumed FOO was the value
 of the constant. Any constant, qualified or fully qualified, that contains a
 backslash will produce a fatal error if not found.

 Example #10 Undefined constants

 <?php
namespace bar;
$a = FOO; // produces notice - undefined constants "FOO" assumed "FOO";
$a = \FOO; // fatal error, undefined namespace constant FOO
$a = Bar\FOO; // fatal error, undefined namespace constant bar\Bar\FOO
$a = \Bar\FOO; // fatal error, undefined namespace constant Bar\FOO
?>

 Cannot override special constants null, true or false

 Any attempt to define a namespaced constant that is a special, built-in constant
 results in a fatal error

 Example #11 Undefined constants

 <?php
namespace bar;
const NULL = 0; // fatal error;
const true = 'stupid'; // also fatal error;
// etc.
?>

 Enumerations

Table of Contents
	Enumerations overview
	Basic enumerations
	Backed enumerations
	Enumeration methods
	Enumeration static methods
	Enumeration constants
	Traits
	Enum values in constant expressions
	Differences from objects
	Value listing
	Serialization
	Why enums aren't extendable
	Examples

 Enumerations overview

 (PHP 8 >= 8.1.0)

 Enumerations, or "Enums" allow a developer to define a custom type that is limited to one
 of a discrete number of possible values. That can be especially helpful when defining a
 domain model, as it enables "making invalid states unrepresentable."

 Enums appear in many languages with a variety of different features. In PHP,
 Enums are a special kind of object. The Enum itself is a class, and its possible
 cases are all single-instance objects of that class. That means Enum cases are
 valid objects and may be used anywhere an object may be used, including type checks.

 The most popular example of enumerations is the built-in boolean type, which is an
 enumerated type with legal values true and false.
 Enums allows developers to define their own arbitrarily robust enumerations.

 Basic enumerations

 Enums are similar to classes, and share the same namespaces as classes, interfaces, and traits.
 They are also autoloadable the same way. An Enum defines a new type, which has a fixed, limited
 number of possible legal values.

<?php

enum Suit
{
 case Hearts;
 case Diamonds;
 case Clubs;
 case Spades;
}
?>

 This declaration creates a new enumerated type named Suit, which has
 four and only four legal values: Suit::Hearts, Suit::Diamonds,
 Suit::Clubs, and Suit::Spades. Variables may be assigned
 to one of those legal values. A function may be type checked against an enumerated type,
 in which case only values of that type may be passed.

<?php

function pick_a_card(Suit $suit)
{
 /* ... */
}

$val = Suit::Diamonds;

// OK
pick_a_card($val);

// OK
pick_a_card(Suit::Clubs);

// TypeError: pick_a_card(): Argument #1 ($suit) must be of type Suit, string given
pick_a_card('Spades');
?>

 An Enumeration may have zero or more case definitions, with no maximum.
 A zero-case enum is syntactically valid, if rather useless.

 For Enumeration cases, the same syntax rules apply as to any label in PHP, see
 Constants.

 By default, cases are not intrinsically backed by a scalar value. That is, Suit::Hearts
 is not equal to "0". Instead, each case is backed by a singleton object of that name. That means that:

<?php

$a = Suit::Spades;
$b = Suit::Spades;

$a === $b; // true

$a instanceof Suit; // true
?>

 It also means that enum values are never < or > each other,
 since those comparisons are not meaningful on objects. Those comparisons will always return
 false when working with enum values.

 This type of case, with no related data, is called a "Pure Case." An Enum that contains
 only Pure Cases is called a Pure Enum.

 All Pure Cases are implemented as instances of their enum type. The enum type is represented internally as a class.

 All Cases have a read-only property, name, that is the case-sensitive name
 of the case itself.

<?php

print Suit::Spades->name;
// prints "Spades"
?>

 It is also possible to use the defined() and constant()
 functions to check for the existence of or read an enum case if the name is obtained dynamically.
 This is, however, discouraged as using Backed enums
 should work for most use cases.

 Backed enumerations

 By default, Enumerated Cases have no scalar equivalent. They are simply singleton objects. However,
 there are ample cases where an Enumerated Case needs to be able to round-trip to a database or
 similar datastore, so having a built-in scalar (and thus trivially serializable) equivalent defined
 intrinsically is useful.

 To define a scalar equivalent for an Enumeration, the syntax is as follows:

<?php

enum Suit: string
{
 case Hearts = 'H';
 case Diamonds = 'D';
 case Clubs = 'C';
 case Spades = 'S';
}
?>

 A case that has a scalar equivalent is called a Backed Case, as it is "Backed"
 by a simpler value. An Enum that contains all Backed Cases is called a "Backed Enum."
 A Backed Enum may contain only Backed Cases. A Pure Enum may contain only Pure Cases.

 A Backed Enum may be backed by types of int or string,
 and a given enumeration supports only a single type at a time (that is, no union of int|string).
 If an enumeration is marked as having a scalar equivalent, then all cases must have a unique
 scalar equivalent defined explicitly. There are no auto-generated scalar equivalents
 (e.g., sequential integers). Backed cases must be unique; two backed enum cases may
 not have the same scalar equivalent. However, a constant may refer to a case, effectively
 creating an alias. See Enumeration constants.

 Equivalent values must be literals or literal expressions. Constants and constant expressions
 are not supported. That is, 1 + 1 is allowed, but 1 + SOME_CONST
 is not.

 Backed Cases have an additional read-only property, value, which is the value
 specified in the definition.

<?php

print Suit::Clubs->value;
// Prints "C"
?>

 In order to enforce the value property as read-only, a variable cannot
 be assigned as a reference to it. That is, the following throws an error:

<?php

$suit = Suit::Clubs;
$ref = &$suit->value;
// Error: Cannot acquire reference to property Suit::$value
?>

 Backed enums implement an internal BackedEnum interface,
 which exposes two additional methods:

 	
 from(int|string): self will take a scalar and return the corresponding
 Enum Case. If one is not found, it will throw a ValueError. This is mainly
 useful in cases where the input scalar is trusted and a missing enum value should be
 considered an application-stopping error.

 	
 tryFrom(int|string): ?self will take a scalar and return the
 corresponding Enum Case. If one is not found, it will return null.
 This is mainly useful in cases where the input scalar is untrusted and the caller wants
 to implement their own error handling or default-value logic.

 The from() and tryFrom() methods follow standard
 weak/strong typing rules. In weak typing mode, passing an integer or string is acceptable
 and the system will coerce the value accordingly. Passing a float will also work and be
 coerced. In strict typing mode, passing an integer to from() on a
 string-backed enum (or vice versa) will result in a TypeError,
 as will a float in all circumstances. All other parameter types will throw a TypeError
 in both modes.

<?php

$record = get_stuff_from_database($id);
print $record['suit'];

$suit = Suit::from($record['suit']);
// Invalid data throws a ValueError: "X" is not a valid scalar value for enum "Suit"
print $suit->value;

$suit = Suit::tryFrom('A') ?? Suit::Spades;
// Invalid data returns null, so Suit::Spades is used instead.
print $suit->value;
?>

 Manually defining a from() or tryFrom() method on a Backed Enum will result in a fatal error.

 Enumeration methods

 Enums (both Pure Enums and Backed Enums) may contain methods, and may implement interfaces.
 If an Enum implements an interface, then any type check for that interface will also accept
 all cases of that Enum.

<?php

interface Colorful
{
 public function color(): string;
}

enum Suit implements Colorful
{
 case Hearts;
 case Diamonds;
 case Clubs;
 case Spades;

 // Fulfills the interface contract.
 public function color(): string
 {
 return match($this) {
 Suit::Hearts, Suit::Diamonds => 'Red',
 Suit::Clubs, Suit::Spades => 'Black',
 };
 }

 // Not part of an interface; that's fine.
 public function shape(): string
 {
 return "Rectangle";
 }
}

function paint(Colorful $c)
{
 /* ... */
}

paint(Suit::Clubs); // Works

print Suit::Diamonds->shape(); // prints "Rectangle"
?>

 In this example, all four instances of Suit have two methods,
 color() and shape(). As far as calling code
 and type checks are concerned, they behave exactly the same as any other object instance.

 On a Backed Enum, the interface declaration goes after the backing type declaration.

 <?php

interface Colorful
{
 public function color(): string;
}

enum Suit: string implements Colorful
{
 case Hearts = 'H';
 case Diamonds = 'D';
 case Clubs = 'C';
 case Spades = 'S';

 // Fulfills the interface contract.
 public function color(): string
 {
 return match($this) {
 Suit::Hearts, Suit::Diamonds => 'Red',
 Suit::Clubs, Suit::Spades => 'Black',
 };
 }
}
?>

 Inside a method, the $this variable is defined and refers to the Case instance.

 Methods may be arbitrarily complex, but in practice will usually return a static value or
 match on $this to provide
 different results for different cases.

 Note that in this case it would be a better data modeling practice to also define a
 SuitColor Enum Type with values Red and Black and return that instead.
 However, that would complicate this example.

 The above hierarchy is logically similar to the following class structure
 (although this is not the actual code that runs):

<?php

interface Colorful
{
 public function color(): string;
}

final class Suit implements UnitEnum, Colorful
{
 public const Hearts = new self('Hearts');
 public const Diamonds = new self('Diamonds');
 public const Clubs = new self('Clubs');
 public const Spades = new self('Spades');

 private function __construct(public readonly string $name) {}

 public function color(): string
 {
 return match($this) {
 Suit::Hearts, Suit::Diamonds => 'Red',
 Suit::Clubs, Suit::Spades => 'Black',
 };
 }

 public function shape(): string
 {
 return "Rectangle";
 }

 public static function cases(): array
 {
 // Illegal method, because manually defining a cases() method on an Enum is disallowed.
 // See also "Value listing" section.
 }
}
?>

 Methods may be public, private, or protected, although in practice private and
 protected are equivalent as inheritance is not allowed.

 Enumeration static methods

 Enumerations may also have static methods. The use for static methods on the
 enumeration itself is primarily for alternative constructors. E.g.:

<?php

enum Size
{
 case Small;
 case Medium;
 case Large;

 public static function fromLength(int $cm): static
 {
 return match(true) {
 $cm < 50 => static::Small,
 $cm < 100 => static::Medium,
 default => static::Large,
 };
 }
}
?>

 Static methods may be public, private, or protected, although in practice private
 and protected are equivalent as inheritance is not allowed.

 Enumeration constants

 Enumerations may include constants, which may be public, private, or protected,
 although in practice private and protected are equivalent as inheritance is not allowed.

 An enum constant may refer to an enum case:

<?php

enum Size
{
 case Small;
 case Medium;
 case Large;

 public const Huge = self::Large;
}
?>

 Traits

 Enumerations may leverage traits, which will behave the same as on classes.
 The caveat is that traits used in an enum must not contain properties.
 They may only include methods and static methods. A trait with properties will
 result in a fatal error.

<?php

interface Colorful
{
 public function color(): string;
}

trait Rectangle
{
 public function shape(): string {
 return "Rectangle";
 }
}

enum Suit implements Colorful
{
 use Rectangle;

 case Hearts;
 case Diamonds;
 case Clubs;
 case Spades;

 public function color(): string
 {
 return match($this) {
 Suit::Hearts, Suit::Diamonds => 'Red',
 Suit::Clubs, Suit::Spades => 'Black',
 };
 }
}
?>

 Enum values in constant expressions

 Because cases are represented as constants on the enum itself, they may be used as static
 values in most constant expressions: property defaults, static variable defaults, parameter
 defaults, global and class constant values. They may not be used in other enum case values, but
 normal constants may refer to an enum case.

 However, implicit magic method calls such as ArrayAccess on enums are not allowed in static
 or constant definitions as we cannot absolutely guarantee that the resulting value is deterministic
 or that the method invocation is free of side effects. Function calls, method calls, and
 property access continue to be invalid operations in constant expressions.

<?php

// This is an entirely legal Enum definition.
enum Direction implements ArrayAccess
{
 case Up;
 case Down;

 public function offsetExists($offset): bool
 {
 return false;
 }

 public function offsetGet($offset): mixed
 {
 return null;
 }

 public function offsetSet($offset, $value): void
 {
 throw new Exception();
 }

 public function offsetUnset($offset): void
 {
 throw new Exception();
 }
}

class Foo
{
 // This is allowed.
 const DOWN = Direction::Down;

 // This is disallowed, as it may not be deterministic.
 const UP = Direction::Up['short'];
 // Fatal error: Cannot use [] on enums in constant expression
}

// This is entirely legal, because it's not a constant expression.
$x = Direction::Up['short'];
var_dump("\$x is " . var_export($x, true));

$foo = new Foo();
?>

 Differences from objects

 Although Enums are built on classes and objects, they do not support all object-related functionality.
 In particular, Enum cases are forbidden from having state.

 	Constructors and Destructors are forbidden.

 	Inheritance is not supported. Enums may not extend or be extended.

 	Static or object properties are not allowed.

 	Cloning an Enum case is not supported, as cases must be singleton instances.

 	Magic methods, except for those listed below, are disallowed.

 	Enums must always be declared before they are used.

 The following object functionality is available, and behaves just as it does on any other object:

 	Public, private, and protected methods.

 	Public, private, and protected static methods.

 	Public, private, and protected constants.

 	Enums may implement any number of interfaces.

 	
 Enums and cases may have attributes attached
 to them. The TARGET_CLASS target
 filter includes Enums themselves. The TARGET_CLASS_CONST target filter
 includes Enum Cases.

 	
 __call, __callStatic,
 and __invoke magic methods

 	__CLASS__ and __FUNCTION__ constants behave as normal

 The ::class magic constant on an Enum type evaluates to the type
 name including any namespace, exactly the same as an object. The ::class
 magic constant on a Case instance also evaluates to the Enum type, as it is an
 instance of that type.

 Additionally, enum cases may not be instantiated directly with new, nor with
 ReflectionClass::newInstanceWithoutConstructor() in reflection. Both will result in an error.

<?php

$clovers = new Suit();
// Error: Cannot instantiate enum Suit

$horseshoes = (new ReflectionClass(Suit::class))->newInstanceWithoutConstructor()
// Error: Cannot instantiate enum Suit
?>

 Value listing

 Both Pure Enums and Backed Enums implement an internal interface named
 UnitEnum. UnitEnum includes a static method
 cases(). cases() returns a packed array of
 all defined Cases in the order of declaration.

<?php

Suit::cases();
// Produces: [Suit::Hearts, Suit::Diamonds, Suit::Clubs, Suit::Spades]
?>

 Manually defining a cases() method on an Enum will result in a fatal error.

 Serialization

 Enumerations are serialized differently from objects. Specifically, they have a new serialization code,
 "E", that specifies the name of the enum case. The deserialization routine is then
 able to use that to set a variable to the existing singleton value. That ensures that:

<?php

Suit::Hearts === unserialize(serialize(Suit::Hearts));

print serialize(Suit::Hearts);
// E:11:"Suit:Hearts";
?>

 On deserialization, if an enum and case cannot be found to match a serialized
 value a warning will be issued and false returned.

 If a Pure Enum is serialized to JSON, an error will be thrown. If a Backed Enum
 is serialized to JSON, it will be represented by its scalar value only, in the
 appropriate type. The behavior of both may be overridden by implementing
 JsonSerializable.

 For print_r(), the output of an enum case is slightly different
 from objects to minimize confusion.

<?php

enum Foo {
 case Bar;
}

enum Baz: int {
 case Beep = 5;
}

print_r(Foo::Bar);
print_r(Baz::Beep);

/* Produces

Foo Enum (
 [name] => Bar
)
Baz Enum:int {
 [name] => Beep
 [value] => 5
}
*/
?>

 Why enums aren't extendable

 Classes have contracts on their methods:

<?php

class A {}
class B extends A {}

function foo(A $a) {}

function bar(B $b) {
 foo($b);
}
?>

 This code is type-safe, as B follows the contract of A, and through the magic of
 co/contra-variance, any expectation one may have of the methods will be
 preserved, exceptions excepted.

 Enums have contracts on their cases, not methods:

<?php

enum ErrorCode {
 case SOMETHING_BROKE;
}

function quux(ErrorCode $errorCode)
{
 // When written, this code appears to cover all cases
 match ($errorCode) {
 ErrorCode::SOMETHING_BROKE => true,
 }
}

?>

 The match statement in the function quux can be static analyzed to cover
 all of the cases in ErrorCode.

 But imagine it was allowed to extend enums:

<?php

// Thought experiment code where enums are not final.
// Note, this won't actually work in PHP.
enum MoreErrorCode extends ErrorCode {
 case PEBKAC;
}

function fot(MoreErrorCode $errorCode) {
 quux($errorCode);
}

fot(MoreErrorCode::PEBKAC);

?>

 Under normal inheritance rules, a class that extends another will pass
 the type check.

 The problem would be that the match statement in quux() no longer covers all
 the cases. Because it doesn't know about MoreErrorCode::PEBKAC the match will throw an exception.

 Because of this enums are final and can't be extended.

 Examples

 Example #1 Basic limited values

<?php

enum SortOrder
{
 case Asc;
 case Desc;
}

function query($fields, $filter, SortOrder $order = SortOrder::Asc)
{
 /* ... */
}
?>

 The query() function can now proceed safe in the knowledge that
 $order is guaranteed to be either SortOrder::Asc
 or SortOrder::Desc. Any other value would have resulted in a
 TypeError, so no further error checking or testing is needed.

 Example #2 Advanced exclusive values

<?php

enum UserStatus: string
{
 case Pending = 'P';
 case Active = 'A';
 case Suspended = 'S';
 case CanceledByUser = 'C';

 public function label(): string
 {
 return match($this) {
 static::Pending => 'Pending',
 static::Active => 'Active',
 static::Suspended => 'Suspended',
 static::CanceledByUser => 'Canceled by user',
 };
 }
}
?>

 In this example, a user's status may be one of, and exclusively, UserStatus::Pending,
 UserStatus::Active, UserStatus::Suspended, or
 UserStatus::CanceledByUser. A function can type a parameter against
 UserStatus and then only accept those four values, period.

 All four values have a label() method, which returns a human-readable string.
 That string is independent of the "machine name" scalar equivalent string, which can be used in,
 for example, a database field or an HTML select box.

<?php

foreach (UserStatus::cases() as $case) {
 printf('<option value="%s">%s</option>\n', $case->value, $case->label());
}
?>

 Errors

Table of Contents
	Basics
	Errors in PHP 7

 Introduction

 Sadly, no matter how careful we are when writing our code, errors are a
 fact of life. PHP will report errors, warnings and notices for many common
 coding and runtime problems, and knowing how to detect and handle these
 errors will make debugging much easier.

 Basics

 PHP reports errors in response to a number of internal error conditions.
 These may be used to signal a number of different conditions, and can be
 displayed and/or logged as required.

 Every error that PHP generates includes a type. A
 list of these error types is available,
 along with a short description of their behaviour and how they can be
 caused.

 Handling errors with PHP

 If no error handler is set, then PHP will handle any errors that occur
 according to its configuration. Which errors are reported and which are
 ignored is controlled by the
 error_reporting
 php.ini directive, or at runtime by calling
 error_reporting(). It is strongly recommended that the
 configuration directive be set, however, as some errors can occur before
 execution of your script begins.

 In a development environment, you should always set
 error_reporting
 to E_ALL, as you need to be aware of and fix the
 issues raised by PHP. In production, you may wish to set this to a less
 verbose level such as
 E_ALL & ~E_NOTICE & ~E_DEPRECATED, but
 in many cases E_ALL is also appropriate, as it may
 provide early warning of potential issues.

 What PHP does with these errors depends on two further php.ini directives.
 display_errors
 controls whether the error is shown as part of the script's output. This
 should always be disabled in a production environment, as it can include
 confidential information such as database passwords, but is often useful to
 enable in development, as it ensures immediate reporting of issues.

 In addition to displaying errors, PHP can log errors when the
 log_errors
 directive is enabled. This will log any errors to the file or syslog
 defined by
 error_log. This
 can be extremely useful in a production environment, as you can log errors
 that occur and then generate reports based on those errors.

 User error handlers

 If PHP's default error handling is inadequate, you can also handle many
 types of error with your own custom error handler by installing it with
 set_error_handler(). While some error types cannot be
 handled this way, those that can be handled can then be handled in the way
 that your script sees fit: for example, this can be used to show a custom
 error page to the user and then report more directly than via a log, such
 as by sending an e-mail.

 Errors in PHP 7

 PHP 7 changes how most errors are reported by PHP. Instead of reporting
 errors through the traditional error reporting mechanism used by PHP 5, most
 errors are now reported by throwing Error exceptions.

 As with normal exceptions, these Error exceptions
 will bubble up until they reach the first matching
 catch
 block. If there are no matching blocks, then any default exception handler
 installed with set_exception_handler() will be called,
 and if there is no default exception handler, then the exception will be
 converted to a fatal error and will be handled like a traditional error.

 As the Error hierarchy does not inherit from
 Exception, code that uses
 catch (Exception $e) { ... } blocks to handle uncaught
 exceptions in PHP 5 will find that these Errors are
 not caught by these blocks. Either a catch (Error $e) { ... }
 block or a set_exception_handler() handler is required.

 Error hierarchy

 	
 Throwable

 	
 Error

 	
 ArithmeticError

 	
 DivisionByZeroError

 	
 AssertionError

 	
 CompileError

 	
 ParseError

 	
 TypeError

 	
 ArgumentCountError

 	
 ValueError

 	
 UnhandledMatchError

 	
 FiberError

 	
 Exception

 	
 ...

 Exceptions

Table of Contents
	Extending Exceptions

 PHP has an exception model similar to that of other programming
 languages. An exception can be thrown, and caught ("catched") within
 PHP. Code may be surrounded in a try block, to facilitate the catching
 of potential exceptions. Each try must have at least one corresponding
 catch or finally block.

 If an exception is thrown and its current function scope has no catch
 block, the exception will "bubble up" the call stack to the calling
 function until it finds a matching catch block. All finally blocks it encounters
 along the way will be executed. If the call stack is unwound all the way to the
 global scope without encountering a matching catch block, the program will
 terminate with a fatal error unless a global exception handler has been set.

 The thrown object must be an instanceof Throwable.
 Trying to throw an object that is not will result in a PHP Fatal Error.

 As of PHP 8.0.0, the throw keyword is an expression and may be used in any expression
 context. In prior versions it was a statement and was required to be on its own line.

 catch

 A catch block defines how to respond to a thrown exception. A catch
 block defines one or more types of exception or error it can handle, and
 optionally a variable to which to assign the exception. (The variable was
 required prior to PHP 8.0.0.) The first catch block a thrown exception
 or error encounters that matches the type of the thrown object will handle
 the object.

 Multiple catch blocks can be used to catch different classes of
 exceptions. Normal execution (when no exception is thrown within the try
 block) will continue after that last catch block defined in sequence.
 Exceptions can be thrown (or re-thrown) within a catch block. If not,
 execution will continue after the catch block that was triggered.

 When an exception is thrown, code following the statement will not be
 executed, and PHP will attempt to find the first matching catch block.
 If an exception is not caught, a PHP Fatal Error will be issued with an
 "Uncaught Exception ..." message, unless a handler has
 been defined with set_exception_handler().

 As of PHP 7.1.0, a catch block may specify multiple exceptions
 using the pipe (|) character. This is useful for when
 different exceptions from different class hierarchies are handled the
 same.

 As of PHP 8.0.0, the variable name for a caught exception is optional.
 If not specified, the catch block will still execute but will not
 have access to the thrown object.

 finally

 A finally block may also be specified after or
 instead of catch blocks. Code within the finally block will always be
 executed after the try and catch blocks, regardless of whether an
 exception has been thrown, and before normal execution resumes.

 One notable interaction is between the finally block and a return statement.
 If a return statement is encountered inside either the try or the catch blocks,
 the finally block will still be executed. Moreover, the return statement is
 evaluated when encountered, but the result will be returned after the finally block
 is executed. Additionally, if the finally block also contains a return statement,
 the value from the finally block is returned.

 Global exception handler

 If an exception is allowed to bubble up to the global scope, it may be caught
 by a global exception handler if set. The set_exception_handler()
 function can set a function that will be called in place of a catch block if no
 other block is invoked. The effect is essentially the same as if the entire program
 were wrapped in a try-catch block with that function as the catch.

 Notes

 Note:

 Internal PHP functions mainly use
 Error reporting, only modern
 Object-oriented
 extensions use exceptions. However, errors can be easily translated to
 exceptions with ErrorException.
 This technique only works with non-fatal errors, however.

 Example #1 Converting error reporting to exceptions

<?php
function exceptions_error_handler($severity, $message, $filename, $lineno) {
 throw new ErrorException($message, 0, $severity, $filename, $lineno);
}

set_error_handler('exceptions_error_handler');
?>

 Tip

 The Standard PHP Library (SPL) provides
 a good number of built-in
 exceptions.

 Examples

 Example #2 Throwing an Exception

<?php
function inverse($x) {
 if (!$x) {
 throw new Exception('Division by zero.');
 }
 return 1/$x;
}

try {
 echo inverse(5) . "\n";
 echo inverse(0) . "\n";
} catch (Exception $e) {
 echo 'Caught exception: ', $e->getMessage(), "\n";
}

// Continue execution
echo "Hello World\n";
?>

 The above example will output:

0.2
Caught exception: Division by zero.
Hello World

 Example #3 Exception handling with a finally block

<?php
function inverse($x) {
 if (!$x) {
 throw new Exception('Division by zero.');
 }
 return 1/$x;
}

try {
 echo inverse(5) . "\n";
} catch (Exception $e) {
 echo 'Caught exception: ', $e->getMessage(), "\n";
} finally {
 echo "First finally.\n";
}

try {
 echo inverse(0) . "\n";
} catch (Exception $e) {
 echo 'Caught exception: ', $e->getMessage(), "\n";
} finally {
 echo "Second finally.\n";
}

// Continue execution
echo "Hello World\n";
?>

 The above example will output:

0.2
First finally.
Caught exception: Division by zero.
Second finally.
Hello World

 Example #4 Interaction between the finally block and return

<?php

function test() {
 try {
 throw new Exception('foo');
 } catch (Exception $e) {
 return 'catch';
 } finally {
 return 'finally';
 }
}

echo test();
?>

 The above example will output:

finally

 Example #5 Nested Exception

<?php

class MyException extends Exception { }

class Test {
 public function testing() {
 try {
 try {
 throw new MyException('foo!');
 } catch (MyException $e) {
 // rethrow it
 throw $e;
 }
 } catch (Exception $e) {
 var_dump($e->getMessage());
 }
 }
}

$foo = new Test;
$foo->testing();

?>

 The above example will output:

string(4) "foo!"

 Example #6 Multi catch exception handling

<?php

class MyException extends Exception { }

class MyOtherException extends Exception { }

class Test {
 public function testing() {
 try {
 throw new MyException();
 } catch (MyException | MyOtherException $e) {
 var_dump(get_class($e));
 }
 }
}

$foo = new Test;
$foo->testing();

?>

 The above example will output:

string(11) "MyException"

 Example #7 Omitting the caught variable

 Only permitted in PHP 8.0.0 and later.

<?php

class SpecificException extends Exception {}

function test() {
 throw new SpecificException('Oopsie');
}

try {
 test();
} catch (SpecificException) {
 print "A SpecificException was thrown, but we don't care about the details.";
}
?>

 Example #8 Throw as an expression

 Only permitted in PHP 8.0.0 and later.

<?php

function test() {
 do_something_risky() or throw new Exception('It did not work');
}

try {
 test();
} catch (Exception $e) {
 print $e->getMessage();
}
?>

 Extending Exceptions

 A User defined Exception class can be defined by extending the built-in
 Exception class. The members and properties below, show what is accessible
 within the child class that derives from the built-in Exception class.

 Example #1 The Built in Exception class

 <?php
class Exception implements Throwable
{
 protected $message = 'Unknown exception'; // exception message
 private $string; // __toString cache
 protected $code = 0; // user defined exception code
 protected $file; // source filename of exception
 protected $line; // source line of exception
 private $trace; // backtrace
 private $previous; // previous exception if nested exception

 public function __construct($message = '', $code = 0, Throwable $previous = null);

 final private function __clone(); // Inhibits cloning of exceptions.

 final public function getMessage(); // message of exception
 final public function getCode(); // code of exception
 final public function getFile(); // source filename
 final public function getLine(); // source line
 final public function getTrace(); // an array of the backtrace()
 final public function getPrevious(); // previous exception
 final public function getTraceAsString(); // formatted string of trace

 // Overrideable
 public function __toString(); // formatted string for display
}
?>

 If a class extends the built-in Exception class and re-defines the constructor, it is highly recommended
 that it also call parent::__construct()
 to ensure all available data has been properly assigned. The __toString() method can be overridden
 to provide a custom output when the object is presented as a string.

 Note:

 Exceptions cannot be cloned. Attempting to clone an Exception will result in a
 fatal E_ERROR error.

 Example #2 Extending the Exception class

 <?php
/**
 * Define a custom exception class
 */
class MyException extends Exception
{
 // Redefine the exception so message isn't optional
 public function __construct($message, $code = 0, Throwable $previous = null) {
 // some code

 // make sure everything is assigned properly
 parent::__construct($message, $code, $previous);
 }

 // custom string representation of object
 public function __toString() {
 return __CLASS__ . ": [{$this->code}]: {$this->message}\n";
 }

 public function customFunction() {
 echo "A custom function for this type of exception\n";
 }
}

/**
 * Create a class to test the exception
 */
class TestException
{
 public $var;

 const THROW_NONE = 0;
 const THROW_CUSTOM = 1;
 const THROW_DEFAULT = 2;

 function __construct($avalue = self::THROW_NONE) {

 switch ($avalue) {
 case self::THROW_CUSTOM:
 // throw custom exception
 throw new MyException('1 is an invalid parameter', 5);
 break;

 case self::THROW_DEFAULT:
 // throw default one.
 throw new Exception('2 is not allowed as a parameter', 6);
 break;

 default:
 // No exception, object will be created.
 $this->var = $avalue;
 break;
 }
 }
}

// Example 1
try {
 $o = new TestException(TestException::THROW_CUSTOM);
} catch (MyException $e) { // Will be caught
 echo "Caught my exception\n", $e;
 $e->customFunction();
} catch (Exception $e) { // Skipped
 echo "Caught Default Exception\n", $e;
}

// Continue execution
var_dump($o); // Null
echo "\n\n";

// Example 2
try {
 $o = new TestException(TestException::THROW_DEFAULT);
} catch (MyException $e) { // Doesn't match this type
 echo "Caught my exception\n", $e;
 $e->customFunction();
} catch (Exception $e) { // Will be caught
 echo "Caught Default Exception\n", $e;
}

// Continue execution
var_dump($o); // Null
echo "\n\n";

// Example 3
try {
 $o = new TestException(TestException::THROW_CUSTOM);
} catch (Exception $e) { // Will be caught
 echo "Default Exception caught\n", $e;
}

// Continue execution
var_dump($o); // Null
echo "\n\n";

// Example 4
try {
 $o = new TestException();
} catch (Exception $e) { // Skipped, no exception
 echo "Default Exception caught\n", $e;
}

// Continue execution
var_dump($o); // TestException
echo "\n\n";
?>

 Fibers

 Fibers overview

 (PHP 8 >= 8.1.0)

 Fibers represent full-stack, interruptible functions. Fibers may be suspended from anywhere in the call-stack,
 pausing execution within the fiber until the fiber is resumed at a later time.

 Fibers pause the entire execution stack, so the direct caller of the function does not need to change how it
 invokes the function.

 Execution may be interrupted anywhere in the call stack using Fiber::suspend()
 (that is, the call to Fiber::suspend() may be in a deeply nested function or not
 even exist at all).

 Unlike stack-less Generators, each Fiber has its own call stack,
 allowing them to be paused within deeply nested function calls. A function declaring an interruption point
 (that is, calling Fiber::suspend()) need not change its return type, unlike a function using
 yield which must return a Generator instance.

 Fibers can be suspended in any function call, including those called from within the PHP VM, such as functions
 provided to array_map() or methods called by foreach on an
 Iterator object.

 Once suspended, execution of the fiber may be resumed with any value using Fiber::resume()
 or by throwing an exception into the fiber using Fiber::throw(). The value is returned
 (or exception thrown) from Fiber::suspend().

 Note:

 Due to current limitations it is not possible to switch fibers in the destructor of an object.

 Example #1 Basic usage

 <?php
$fiber = new Fiber(function (): void {
 $value = Fiber::suspend('fiber');
 echo "Value used to resume fiber: ", $value, PHP_EOL;
});

$value = $fiber->start();

echo "Value from fiber suspending: ", $value, PHP_EOL;

$fiber->resume('test');
?>

 The above example will output:

Value from fiber suspending: fiber
Value used to resume fiber: test

 Generators

Table of Contents
	Generators overview
	Generator syntax
	Comparing generators with Iterator objects

 Generators overview

 (PHP 5 >= 5.5.0, PHP 7, PHP 8)

 Generators provide an easy way to implement simple
 iterators without the
 overhead or complexity of implementing a class that implements the
 Iterator interface.

 A generator allows you to write code that uses foreach to iterate over a
 set of data without needing to build an array in memory, which may cause
 you to exceed a memory limit, or require a considerable amount of
 processing time to generate. Instead, you can write a generator function,
 which is the same as a normal
 function, except that instead
 of
 returning once, a
 generator can yield as many times as it needs to in order to provide the
 values to be iterated over.

 A simple example of this is to reimplement the range()
 function as a generator. The standard range() function
 has to generate an array with every value in it and return it, which can
 result in large arrays: for example, calling
 range(0, 1000000) will result in well over 100 MB of
 memory being used.

 As an alternative, we can implement an xrange()
 generator, which will only ever need enough memory to create an
 Iterator object and track the current state of the
 generator internally, which turns out to be less than 1 kilobyte.

 Example #1 Implementing range() as a generator

<?php
function xrange($start, $limit, $step = 1) {
 if ($start <= $limit) {
 if ($step <= 0) {
 throw new LogicException('Step must be positive');
 }

 for ($i = $start; $i <= $limit; $i += $step) {
 yield $i;
 }
 } else {
 if ($step >= 0) {
 throw new LogicException('Step must be negative');
 }

 for ($i = $start; $i >= $limit; $i += $step) {
 yield $i;
 }
 }
}

/*
 * Note that both range() and xrange() result in the same
 * output below.
 */

echo 'Single digit odd numbers from range(): ';
foreach (range(1, 9, 2) as $number) {
 echo "$number ";
}
echo "\n";

echo 'Single digit odd numbers from xrange(): ';
foreach (xrange(1, 9, 2) as $number) {
 echo "$number ";
}
?>

 The above example will output:

Single digit odd numbers from range(): 1 3 5 7 9
Single digit odd numbers from xrange(): 1 3 5 7 9

 Generator objects

 When a generator function is called, a new object of the
 internal Generator class is returned. This object
 implements the Iterator interface in much the same
 way as a forward-only iterator object would, and provides methods that can
 be called to manipulate the state of the generator, including sending
 values to and returning values from it.

 Generator syntax

 A generator function looks just like a normal function, except that instead
 of returning a value, a generator yields as many values as it needs to.
 Any function containing yield is a generator function.

 When a generator function is called, it returns an object that can be
 iterated over. When you iterate over that object (for instance, via a
 foreach loop), PHP will call the object's iteration methods each time it needs a
 value, then saves the state of the generator when the generator yields a
 value so that it can be resumed when the next value is required.

 Once there are no more values to be yielded, then the generator
 can simply exit, and the calling code continues just as if an array has run
 out of values.

 Note:

 A generator can return values, which can be retrieved using
 Generator::getReturn().

 yield keyword

 The heart of a generator function is the yield keyword.
 In its simplest form, a yield statement looks much like a return
 statement, except that instead of stopping execution of the function and
 returning, yield instead provides a value to the code looping over the
 generator and pauses execution of the generator function.

 Example #1 A simple example of yielding values

<?php
function gen_one_to_three() {
 for ($i = 1; $i <= 3; $i++) {
 // Note that $i is preserved between yields.
 yield $i;
 }
}

$generator = gen_one_to_three();
foreach ($generator as $value) {
 echo "$value\n";
}
?>

 The above example will output:

1
2
3

 Note:

 Internally, sequential integer keys will be paired with the yielded
 values, just as with a non-associative array.

 Yielding values with keys

 PHP also supports associative arrays, and generators are no different. In
 addition to yielding simple values, as shown above, you can also yield a
 key at the same time.

 The syntax for yielding a key/value pair is very similar to that used to
 define an associative array, as shown below.

 Example #2 Yielding a key/value pair

<?php
/*
 * The input is semi-colon separated fields, with the first
 * field being an ID to use as a key.
 */

$input = <<<'EOF'
1;PHP;Likes dollar signs
2;Python;Likes whitespace
3;Ruby;Likes blocks
EOF;

function input_parser($input) {
 foreach (explode("\n", $input) as $line) {
 $fields = explode(';', $line);
 $id = array_shift($fields);

 yield $id => $fields;
 }
}

foreach (input_parser($input) as $id => $fields) {
 echo "$id:\n";
 echo " $fields[0]\n";
 echo " $fields[1]\n";
}
?>

 The above example will output:

1:
 PHP
 Likes dollar signs
2:
 Python
 Likes whitespace
3:
 Ruby
 Likes blocks

 Yielding null values

 Yield can be called without an argument to yield a null value with an
 automatic key.

 Example #3 Yielding nulls

<?php
function gen_three_nulls() {
 foreach (range(1, 3) as $i) {
 yield;
 }
}

var_dump(iterator_to_array(gen_three_nulls()));
?>

 The above example will output:

array(3) {
 [0]=>
 NULL
 [1]=>
 NULL
 [2]=>
 NULL
}

 Yielding by reference

 Generator functions are able to yield values by reference as well as by
 value. This is done in the same way as
 returning references from functions:
 by prepending an ampersand to the function name.

 Example #4 Yielding values by reference

<?php
function &gen_reference() {
 $value = 3;

 while ($value > 0) {
 yield $value;
 }
}

/*
 * Note that we can change $number within the loop, and
 * because the generator is yielding references, $value
 * within gen_reference() changes.
 */
foreach (gen_reference() as &$number) {
 echo (--$number).'... ';
}
?>

 The above example will output:

2... 1... 0...

 Generator delegation via yield from

 Generator delegation allows you to yield values from another
 generator, Traversable object, or
 array by using the yield from keyword.
 The outer generator will then yield all values from the inner generator,
 object, or array until that is no longer valid, after which execution
 will continue in the outer generator.

 If a generator is used with yield from, the
 yield from expression will also return any value
 returned by the inner generator.

 Caution
 Storing into an array (e.g. with iterator_to_array())

 yield from does not reset the keys. It preserves
 the keys returned by the Traversable object, or
 array. Thus some values may share a common key with another
 yield or yield from, which, upon
 insertion into an array, will overwrite former values with that key.

 A common case where this matters is iterator_to_array()
 returning a keyed array by default, leading to possibly unexpected results.
 iterator_to_array() has a second parameter
 preserve_keys which can be set to false to collect
 all the values while ignoring the keys returned by the Generator.

 Example #5 yield from with iterator_to_array()

<?php
function inner() {
 yield 1; // key 0
 yield 2; // key 1
 yield 3; // key 2
}
function gen() {
 yield 0; // key 0
 yield from inner(); // keys 0-2
 yield 4; // key 1
}
// pass false as second parameter to get an array [0, 1, 2, 3, 4]
var_dump(iterator_to_array(gen()));
?>

 The above example will output:

array(3) {
 [0]=>
 int(1)
 [1]=>
 int(4)
 [2]=>
 int(3)
}

 Example #6 Basic use of yield from

<?php
function count_to_ten() {
 yield 1;
 yield 2;
 yield from [3, 4];
 yield from new ArrayIterator([5, 6]);
 yield from seven_eight();
 yield 9;
 yield 10;
}

function seven_eight() {
 yield 7;
 yield from eight();
}

function eight() {
 yield 8;
}

foreach (count_to_ten() as $num) {
 echo "$num ";
}
?>

 The above example will output:

1 2 3 4 5 6 7 8 9 10

 Example #7 yield from and return values

<?php
function count_to_ten() {
 yield 1;
 yield 2;
 yield from [3, 4];
 yield from new ArrayIterator([5, 6]);
 yield from seven_eight();
 return yield from nine_ten();
}

function seven_eight() {
 yield 7;
 yield from eight();
}

function eight() {
 yield 8;
}

function nine_ten() {
 yield 9;
 return 10;
}

$gen = count_to_ten();
foreach ($gen as $num) {
 echo "$num ";
}
echo $gen->getReturn();
?>

 The above example will output:

1 2 3 4 5 6 7 8 9 10

 Comparing generators with Iterator objects

 The primary advantage of generators is their simplicity. Much less
 boilerplate code has to be written compared to implementing an
 Iterator class, and the code is generally much more
 readable. For example, the following function and class are equivalent:

<?php
function getLinesFromFile($fileName) {
 if (!$fileHandle = fopen($fileName, 'r')) {
 return;
 }

 while (false !== $line = fgets($fileHandle)) {
 yield $line;
 }

 fclose($fileHandle);
}

// versus...

class LineIterator implements Iterator {
 protected $fileHandle;

 protected $line;
 protected $i;

 public function __construct($fileName) {
 if (!$this->fileHandle = fopen($fileName, 'r')) {
 throw new RuntimeException('Couldn\'t open file "' . $fileName . '"');
 }
 }

 public function rewind() {
 fseek($this->fileHandle, 0);
 $this->line = fgets($this->fileHandle);
 $this->i = 0;
 }

 public function valid() {
 return false !== $this->line;
 }

 public function current() {
 return $this->line;
 }

 public function key() {
 return $this->i;
 }

 public function next() {
 if (false !== $this->line) {
 $this->line = fgets($this->fileHandle);
 $this->i++;
 }
 }

 public function __destruct() {
 fclose($this->fileHandle);
 }
}
?>

 This flexibility does come at a cost, however: generators are forward-only
 iterators, and cannot be rewound once iteration has started. This also
 means that the same generator can't be iterated over multiple times: the
 generator will need to be rebuilt by calling the generator function again.

 See Also

 	Object Iteration

 Attributes

Table of Contents
	Attributes overview
	Attribute syntax
	Reading Attributes with the Reflection API
	Declaring Attribute Classes

 Attributes overview

 (PHP 8)

 Attributes offer the ability to add structured, machine-readable metadata information
 on declarations in code: Classes, methods, functions, parameters,
 properties and class constants can be the target of an attribute. The metadata
 defined by attributes can then be inspected at runtime using the
 Reflection
 APIs. Attributes could therefore be thought of as a configuration
 language embedded directly into code.

 With attributes the generic implementation of a
 feature and its concrete use in an application can be decoupled. In a way it is
 comparable to interfaces and their implementations. But where
 interfaces and implementations are about code, attributes are about
 annotating extra information and configuration. Interfaces can
 be implemented by classes, yet attributes can also be declared
 on methods, functions, parameters, properties and class constants.
 As such they are more flexible than interfaces.

 A simple example of attribute usage is to convert an interface
 that has optional methods to use attributes. Let's assume an
 ActionHandler
 interface representing an operation in an application, where some
 implementations of an action handler require setup and others do not. Instead of requiring all classes
 that implement ActionHandler to implement
 a method setUp(),
 an attribute can be used. One benefit
 of this approach is that we can use the attribute several times.

 Example #1 Implementing optional methods of an interface with Attributes

<?php
interface ActionHandler
{
 public function execute();
}

#[Attribute]
class SetUp {}

class CopyFile implements ActionHandler
{
 public string $fileName;
 public string $targetDirectory;

 #[SetUp]
 public function fileExists()
 {
 if (!file_exists($this->fileName)) {
 throw new RuntimeException("File does not exist");
 }
 }

 #[SetUp]
 public function targetDirectoryExists()
 {
 if (!file_exists($this->targetDirectory)) {
 mkdir($this->targetDirectory);
 } elseif (!is_dir($this->targetDirectory)) {
 throw new RuntimeException("Target directory $this->targetDirectory is not a directory");
 }
 }

 public function execute()
 {
 copy($this->fileName, $this->targetDirectory . '/' . basename($this->fileName));
 }
}

function executeAction(ActionHandler $actionHandler)
{
 $reflection = new ReflectionObject($actionHandler);

 foreach ($reflection->getMethods() as $method) {
 $attributes = $method->getAttributes(SetUp::class);

 if (count($attributes) > 0) {
 $methodName = $method->getName();

 $actionHandler->$methodName();
 }
 }

 $actionHandler->execute();
}

$copyAction = new CopyFile();
$copyAction->fileName = "/tmp/foo.jpg";
$copyAction->targetDirectory = "/home/user";

executeAction($copyAction);

 Attribute syntax

 There are several parts to the attributes syntax. First, an attribute
 declaration is always enclosed with a starting
 #[and a corresponding ending
]. Inside, one or many attributes are listed,
 separated by comma. The attribute name is an unqualified, qualified
 or fully-qualified name as described in Using Namespaces Basics.
 Arguments to the attribute are optional, but are enclosed in the usual parenthesis ().
 Arguments to attributes can only be literal values or constant expressions. Both positional and
 named arguments syntax can be used.

 Attribute names and their arguments are resolved to a class and the arguments are passed to its constructor,
 when an instance of the attribute is requested through the Reflection API. As such
 a class should be introduced for each attribute.

 Example #1 Attribute Syntax

<?php
// a.php
namespace MyExample;

use Attribute;

#[Attribute]
class MyAttribute
{
 const VALUE = 'value';

 private $value;

 public function __construct($value = null)
 {
 $this->value = $value;
 }
}

// b.php

namespace Another;

use MyExample\MyAttribute;

#[MyAttribute]
#[\MyExample\MyAttribute]
#[MyAttribute(1234)]
#[MyAttribute(value: 1234)]
#[MyAttribute(MyAttribute::VALUE)]
#[MyAttribute(array("key" => "value"))]
#[MyAttribute(100 + 200)]
class Thing
{
}

#[MyAttribute(1234), MyAttribute(5678)]
class AnotherThing
{
}

 Reading Attributes with the Reflection API

 To access attributes from classes, methods, functions, parameters, properties and class constants,
 the Reflection API provides the method getAttributes() on each of the corresponding
 Reflection objects. This method returns an array of ReflectionAttribute instances
 that can be queried for attribute name, arguments and to instantiate an instance of the represented attribute.

 This separation of reflected attribute representation from actual instance increases control of the programmer
 to handle errors regarding missing attribute classes, mistyped or missing arguments. Only after
 calling ReflectionAttribute::newInstance(), objects of the attribute class are instantiated and the correct matching of arguments
 is validated, not earlier.

 Example #1 Reading Attributes using Reflection API

<?php

#[Attribute]
class MyAttribute
{
 public $value;

 public function __construct($value)
 {
 $this->value = $value;
 }
}

#[MyAttribute(value: 1234)]
class Thing
{
}

function dumpAttributeData($reflection) {
 $attributes = $reflection->getAttributes();

 foreach ($attributes as $attribute) {
 var_dump($attribute->getName());
 var_dump($attribute->getArguments());
 var_dump($attribute->newInstance());
 }
}

dumpAttributeData(new ReflectionClass(Thing::class));
/*
string(11) "MyAttribute"
array(1) {
 ["value"]=>
 int(1234)
}
object(MyAttribute)#3 (1) {
 ["value"]=>
 int(1234)
}
*/

 Instead of iterating all attributes on the reflection instance, only those
 of a particular attribute class can be
 retrieved by passing the searched attribute class name as argument.

 Example #2 Reading Specific Attributes using Reflection API

<?php

function dumpMyAttributeData($reflection) {
 $attributes = $reflection->getAttributes(MyAttribute::class);

 foreach ($attributes as $attribute) {
 var_dump($attribute->getName());
 var_dump($attribute->getArguments());
 var_dump($attribute->newInstance());
 }
}

dumpMyAttributeData(new ReflectionClass(Thing::class));

 Declaring Attribute Classes

 While not strictly required it is recommended to create an actual class for every attribute.
 In the most simple case only an empty class is needed with the #[Attribute] attribute declared
 that can be imported from the global namespace with a use statement.

 Example #1 Simple Attribute Class

<?php

namespace Example;

use Attribute;

#[Attribute]
class MyAttribute
{
}

 To restrict the type of declaration an attribute can be assigned to, a bitmask can be passed as the first
 argument to the #[Attribute] declaration.

 Example #2 Using target specification to restrict where attributes can be used

<?php

namespace Example;

use Attribute;

#[Attribute(Attribute::TARGET_METHOD | Attribute::TARGET_FUNCTION)]
class MyAttribute
{
}

 Declaring MyAttribute on another type will now throw an exception during
 the call to ReflectionAttribute::newInstance()

 The following targets can be specified:

 	Attribute::TARGET_CLASS

 	Attribute::TARGET_FUNCTION

 	Attribute::TARGET_METHOD

 	Attribute::TARGET_PROPERTY

 	Attribute::TARGET_CLASS_CONSTANT

 	Attribute::TARGET_PARAMETER

 	Attribute::TARGET_ALL

 By default an attribute can only be used once per declaration. If the attribute should be repeatable on declarations it must
 be specified as part of the bitmask to the #[Attribute] declaration.

 Example #3 Using IS_REPEATABLE to allow attribute on a declaration multiple times

<?php

namespace Example;

use Attribute;

#[Attribute(Attribute::TARGET_METHOD | Attribute::TARGET_FUNCTION | Attribute::IS_REPEATABLE)]
class MyAttribute
{
}

 References Explained

Table of Contents
	What References Are
	What References Do
	What References Are Not
	Passing by Reference
	Returning References
	Unsetting References
	Spotting References

 What References Are

 References in PHP are a means to access the same variable content
 by different names. They are not like C pointers; for instance,
 you cannot perform pointer arithmetic using them, they are not
 actual memory addresses, and so on. See
 What References Are Not for more
 information. Instead, they are symbol table aliases. Note that in
 PHP, variable name and variable content are different, so the same
 content can have different names. The closest analogy is with
 Unix filenames and files - variable names are directory entries,
 while variable content is the file itself. References can be
 likened to hardlinking in Unix filesystem.

 What References Do

 There are three basic operations performed using references:
 assigning by
 reference, passing
 by reference,
 and returning by
 reference. This section will give an introduction to these
 operations, with links for further reading.

 Assign By Reference

 In the first of these, PHP references allow you to make two
 variables refer to the same content. Meaning, when you do:

<?php
$a =& $b;
?>

 it means that $a and $b
 point to the same content.
 Note:

 $a and $b are completely
 equal here. $a is not pointing to
 $b or vice versa.
 $a and $b are pointing to the
 same place.

 Note:

 If you assign, pass, or return an undefined variable by reference,
 it will get created.

 Example #1 Using references with undefined variables

<?php
function foo(&$var) { }

foo($a); // $a is "created" and assigned to null

$b = array();
foo($b['b']);
var_dump(array_key_exists('b', $b)); // bool(true)

$c = new stdClass;
foo($c->d);
var_dump(property_exists($c, 'd')); // bool(true)
?>

 The same syntax can be used with functions that return
 references:

<?php
$foo =& find_var($bar);
?>

 Using the same syntax with a function that does not
 return by reference will give an error, as will using it with the result
 of the new operator.
 Although objects are passed around as pointers, these are not the same as references,
 as explained under Objects and references.

 Warning

 If you assign a reference to a variable declared global
 inside a function, the reference will be visible only inside the function.
 You can avoid this by using the $GLOBALS array.

 Example #2 Referencing global variables inside functions

<?php
$var1 = "Example variable";
$var2 = "";

function global_references($use_globals)
{
 global $var1, $var2;
 if (!$use_globals) {
 $var2 =& $var1; // visible only inside the function
 } else {
 $GLOBALS["var2"] =& $var1; // visible also in global context
 }
}

global_references(false);
echo "var2 is set to '$var2'\n"; // var2 is set to ''
global_references(true);
echo "var2 is set to '$var2'\n"; // var2 is set to 'Example variable'
?>

 Think about global $var; as a shortcut to $var
 =& $GLOBALS['var'];. Thus assigning another reference
 to $var only changes the local variable's reference.

 Note:

 If you assign a value to a variable with references in a
 foreach statement, the references are modified too.

 Example #3 References and foreach statement

<?php
$ref = 0;
$row =& $ref;
foreach (array(1, 2, 3) as $row) {
 // do something
}
echo $ref; // 3 - last element of the iterated array
?>

 While not being strictly an assignment by reference, expressions created
 with the language construct
 array() can also
 behave as such by prefixing & to the array element
 to add. Example:

<?php
$a = 1;
$b = array(2, 3);
$arr = array(&$a, &$b[0], &$b[1]);
$arr[0]++; $arr[1]++; $arr[2]++;
/* $a == 2, $b == array(3, 4); */
?>

 Note, however, that references inside arrays are potentially dangerous.
 Doing a normal (not by reference) assignment with a reference on the
 right side does not turn the left side into a reference, but references
 inside arrays are preserved in these normal assignments. This also applies
 to function calls where the array is passed by value. Example:

<?php
/* Assignment of scalar variables */
$a = 1;
$b =& $a;
$c = $b;
$c = 7; //$c is not a reference; no change to $a or $b

/* Assignment of array variables */
$arr = array(1);
$a =& $arr[0]; //$a and $arr[0] are in the same reference set
$arr2 = $arr; //not an assignment-by-reference!
$arr2[0]++;
/* $a == 2, $arr == array(2) */
/* The contents of $arr are changed even though it's not a reference! */
?>

 In other words, the reference behavior of arrays is defined in an
 element-by-element basis; the reference behavior of individual elements
 is dissociated from the reference status of the array container.

 Pass By Reference

 The second thing references do is to pass variables by
 reference. This is done by making a local variable in a function
 and a variable in the calling scope referencing the same
 content. Example:

<?php
function foo(&$var)
{
 $var++;
}

$a=5;
foo($a);
?>

 will make $a to be 6. This happens because in
 the function foo the variable
 $var refers to the same content as
 $a. For more information on this, read
 the passing by
 reference section.

 Return By Reference

 The third thing references can do is return by reference.

 What References Are Not

 As said before, references are not pointers. That means, the
 following construct won't do what you expect:

<?php
function foo(&$var)
{
 $var =& $GLOBALS["baz"];
}
foo($bar);
?>

 What happens is that $var in
 foo will be bound with
 $bar in the caller, but then
 re-bound with $GLOBALS["baz"]. There's no way
 to bind $bar in the calling scope to something else
 using the reference mechanism, since $bar is not
 available in the function foo (it is represented by
 $var, but $var has only
 variable contents and not name-to-value binding in the calling
 symbol table).
 You can use returning
 references to reference variables selected by the function.

 Passing by Reference

 You can pass a variable by reference to a function so the function
 can modify the variable. The syntax is as follows:

<?php
function foo(&$var)
{
 $var++;
}

$a=5;
foo($a);
// $a is 6 here
?>

 Note:

 There is no reference sign on a function call - only on
 function definitions. Function definitions alone are enough to
 correctly pass the argument by reference.

 The following things can be passed by reference:

 	

 Variables, i.e. foo($a)

 	

 References returned from functions, i.e.:

<?php
function foo(&$var)
{
 $var++;
}
function &bar()
{
 $a = 5;
 return $a;
}
foo(bar());
?>

 See more about returning by reference.

 No other expressions should be passed by reference, as the
 result is undefined. For example, the following examples of passing
 by reference are invalid:

<?php
function foo(&$var)
{
 $var++;
}
function bar() // Note the missing &
{
 $a = 5;
 return $a;
}
foo(bar()); // Produces a notice

foo($a = 5); // Expression, not variable
foo(5); // Produces fatal error

class Foobar
{
}

foo(new Foobar()) // Produces a notice as of PHP 7.0.7
 // Notice: Only variables should be passed by reference
?>

 Returning References

 Returning by reference is useful when you want to use a function
 to find to which variable a reference should be bound. Do
 not use return-by-reference to increase performance.
 The engine will automatically optimize this on its own. Only return
 references when you have a valid technical reason to do so. To
 return references, use this syntax:

<?php
class foo {
 public $value = 42;

 public function &getValue() {
 return $this->value;
 }
}

$obj = new foo;
$myValue = &$obj->getValue(); // $myValue is a reference to $obj->value, which is 42.
$obj->value = 2;
echo $myValue; // prints the new value of $obj->value, i.e. 2.
?>

 In this example, the property of the object returned by the
 getValue function would be set, not the
 copy, as it would be without using reference syntax.

 Note:

 Unlike parameter passing, here you have to use
 & in both places - to indicate that you
 want to return by reference, not a copy, and to indicate that
 reference binding, rather than usual assignment, should be done
 for $myValue.

 Note:

 If you try to return a reference from a function with the syntax:
 return ($this->value); this will not
 work as you are attempting to return the result of an
 expression, and not a variable, by reference. You can
 only return variables by reference from a function - nothing else.

 To use the returned reference, you must use reference assignment:

<?php
function &collector() {
 static $collection = array();
 return $collection;
}
$collection = &collector();
$collection[] = 'foo';
?>

 To pass the returned reference to another function expecting a reference
 you can use this syntax:

<?php
function &collector() {
 static $collection = array();
 return $collection;
}
array_push(collector(), 'foo');
?>

 Note:

 Note that array_push(&collector(), 'foo'); will
 not work, it results in a fatal error.

 Unsetting References

 When you unset the reference, you just break the binding between
 variable name and variable content. This does not mean that
 variable content will be destroyed. For example:

<?php
$a = 1;
$b =& $a;
unset($a);
?>

 won't unset $b, just $a.

 Again, it might be useful to think about this as analogous to the Unix
 unlink call.

 Spotting References

 Many syntax constructs in PHP are implemented via referencing
 mechanisms, so everything mentioned herein about reference binding also
 applies to these constructs. Some constructs, like passing and
 returning by reference, are mentioned above. Other constructs that
 use references are:

 global References

 When you declare a variable as global $var you
 are in fact creating reference to a global variable. That means,
 this is the same as:

<?php
$var =& $GLOBALS["var"];
?>

 This also means that unsetting $var
 won't unset the global variable.

 Predefined Variables

 PHP provides a large number of predefined variables to all scripts. The
 variables represent everything from
 external variables to
 built-in environment variables, last error messages to last retrieved
 headers.

Table of Contents
	Superglobals — Built-in variables that are always available in all scopes
	$GLOBALS — References all variables available in global scope
	$_SERVER — Server and execution environment information
	$_GET — HTTP GET variables
	$_POST — HTTP POST variables
	$_FILES — HTTP File Upload variables
	$_REQUEST — HTTP Request variables
	$_SESSION — Session variables
	$_ENV — Environment variables
	$_COOKIE — HTTP Cookies
	$php_errormsg — The previous error message
	$http_response_header — HTTP response headers
	$argc — The number of arguments passed to script
	$argv — Array of arguments passed to script

 Superglobals

 Superglobals Built-in variables that are always available in all scopes

 Description

 Several predefined variables in PHP are "superglobals", which means they
 are available in all scopes throughout a script. There is no need to do
 global $variable; to access them within functions
 or methods.

 These superglobal variables are:

 	$GLOBALS

 	$_SERVER

 	$_GET

 	$_POST

 	$_FILES

 	$_COOKIE

 	$_SESSION

 	$_REQUEST

 	$_ENV

 Notes

 Note:
 Variable availability

 By default, all of the superglobals are available but there are
 directives that affect this availability. For further information, refer
 to the documentation for
 variables_order.

 Note:
 Variable variables

 Superglobals cannot be used as
 variable variables
 inside functions or class methods.

 See Also

 	variable scope

 	The variables_order directive

 	The filter extension

 $GLOBALS

 (PHP 4, PHP 5, PHP 7, PHP 8)
$GLOBALS References all variables available in global scope

 Description

 An associative array containing references to all variables which
 are currently defined in the global scope of the script. The
 variable names are the keys of the array.

 Examples

 Example #1 $GLOBALS example

<?php
function test() {
 $foo = "local variable";

 echo '$foo in global scope: ' . $GLOBALS["foo"] . "\n";
 echo '$foo in current scope: ' . $foo . "\n";
}

$foo = "Example content";
test();
?>

 The above example will output
something similar to:

$foo in global scope: Example content
$foo in current scope: local variable

 Warning

 As of PHP 8.1.0, write access to the entire $GLOBALS array is no longer supported:

 Example #2 writing entire $GLOBALS will result in error.

 <?php
 // Generates compile-time error:
 $GLOBALS = [];
 $GLOBALS += [];
 $GLOBALS =& $x;
 $x =& $GLOBALS;
 unset($GLOBALS);
 array_pop($GLOBALS);
 // ...and any other write/read-write operation on $GLOBALS
 ?>

 Notes

 Note: This is a 'superglobal', or
automatic global, variable. This simply means that it is available in
all scopes throughout a script. There is no need to do
global $variable; to access it within functions or methods.

 Note:
 Variable availability

 Unlike all of the other superglobals,
 $GLOBALS has essentially always been available in PHP.

 Note:

 As of PHP 8.1.0, $GLOBALS is now a read-only copy of the global symbol table. That is, global variables cannot be modified via its copy. Previously, $GLOBALS array is excluded from the usual by-value behavior of PHP arrays and global variables can be modified via its copy.

<?php
// Before PHP 8.1.0
$a = 1;
$globals = $GLOBALS; // Ostensibly by-value copy
$globals['a'] = 2;
var_dump($a); // int(2)

// As of PHP 8.1.0
// this no longer modifies $a. The previous behavior violated by-value semantics.
$globals = $GLOBALS;
$globals['a'] = 1;

// To restore the previous behavior, iterate its copy and assign each property back to $GLOBALS.
foreach ($globals as $key => $value) {
 $GLOBALS[$key] = $value;
}
?>

 $_SERVER

 (PHP 4 >= 4.1.0, PHP 5, PHP 7, PHP 8)
$_SERVER Server and execution environment information

 Description

 $_SERVER is an array containing information
 such as headers, paths, and script locations.
 The entries in this array are created by the web server, therefore there
 is no guarantee that every web server will provide any of these;
 servers may omit some, or provide others not listed here.
 However, most of these variables are accounted for in the
 CGI/1.1 specification,
 and are likely to be defined.

 Note:

 When running PHP on the command line
 most of these entries will not be available or have any meaning.

 In addition to the elements listed below, PHP will create additional
 elements with values from request headers. These entries will be named
 HTTP_ followed by the header name,
 capitalized and with underscores instead of hyphens.
 For example, the Accept-Language header would be
 available as $_SERVER['HTTP_ACCEPT_LANGUAGE'].

 Indices

 	'PHP_SELF'

 	

 The filename of the currently executing script, relative to
 the document root. For instance,
 $_SERVER['PHP_SELF'] in a script at the
 address http://example.com/foo/bar.php
 would be /foo/bar.php.
 The __FILE__
 constant contains the full path and filename of the current (i.e.
 included) file.

 If PHP is running as a command-line processor this variable contains
 the script name.

 	'argv'

 	

 Array of arguments passed to the script. When the script is
 run on the command line, this gives C-style access to the
 command line parameters. When called via the GET method, this
 will contain the query string.

 	'argc'

 	

 Contains the number of command line parameters passed to the
 script (if run on the command line).

 	'GATEWAY_INTERFACE'

 	

 What revision of the CGI specification the server is using;
 e.g. 'CGI/1.1'.

 	'SERVER_ADDR'

 	

 The IP address of the server under which the current script is
 executing.

 	'SERVER_NAME'

 	

 The name of the server host under which the current script is
 executing. If the script is running on a virtual host, this
 will be the value defined for that virtual host.

 Note:

 Under Apache 2, UseCanonicalName = On and
 ServerName must be set. Otherwise, this value
 reflects the hostname supplied by the client, which can be spoofed.
 It is not safe to rely on this value in security-dependent contexts.

 	'SERVER_SOFTWARE'

 	

 Server identification string, given in the headers when
 responding to requests.

 	'SERVER_PROTOCOL'

 	

 Name and revision of the information protocol via which the
 page was requested; e.g. 'HTTP/1.0';

 	'REQUEST_METHOD'

 	

 Which request method was used to access the page; e.g. 'GET',
 'HEAD', 'POST', 'PUT'.

 Note:

 PHP script is terminated after sending headers (it means after
 producing any output without output buffering) if the request method
 was HEAD.

 	'REQUEST_TIME'

 	

 The timestamp of the start of the request.

 	'REQUEST_TIME_FLOAT'

 	

 The timestamp of the start of the request, with microsecond precision.

 	'QUERY_STRING'

 	

 The query string, if any, via which the page was accessed.

 	'DOCUMENT_ROOT'

 	

 The document root directory under which the current script is
 executing, as defined in the server's configuration file.

 	'HTTPS'

 	

 Set to a non-empty value if the script was queried through the HTTPS
 protocol.

 	'REMOTE_ADDR'

 	

 The IP address from which the user is viewing the current
 page.

 	'REMOTE_HOST'

 	

 The Host name from which the user is viewing the current
 page. The reverse dns lookup is based on the
 REMOTE_ADDR of the user.

 Note:

 The web server must be configured to create this variable.
 For example in Apache HostnameLookups On must be
 set inside httpd.conf for it to exist. See also
 gethostbyaddr().

 	'REMOTE_PORT'

 	

 The port being used on the user's machine to communicate with
 the web server.

 	'REMOTE_USER'

 	

 The authenticated user.

 	'REDIRECT_REMOTE_USER'

 	

 The authenticated user if the request is internally redirected.

 	'SCRIPT_FILENAME'

 	

 The absolute pathname of the currently executing script.
 Note:

 If a script is executed with the CLI, as a relative path,
 such as file.php or
 ../file.php,
 $_SERVER['SCRIPT_FILENAME'] will
 contain the relative path specified by the user.

 	'SERVER_ADMIN'

 	

 The value given to the SERVER_ADMIN (for Apache) directive in
 the web server configuration file. If the script is running
 on a virtual host, this will be the value defined for that
 virtual host.

 	'SERVER_PORT'

 	

 The port on the server machine being used by the web server
 for communication. For default setups, this will be '80';
 using SSL, for instance, will change this to whatever your
 defined secure HTTP port is.

 Note:

 Under Apache 2, UseCanonicalName = On, as well
 as UseCanonicalPhysicalPort = On must be set in
 order to get the physical (real) port, otherwise, this value can be
 spoofed, and it may or may not return the physical port value.
 It is not safe to rely on this value in security-dependent contexts.

 	'SERVER_SIGNATURE'

 	

 String containing the server version and virtual host name
 which are added to server-generated pages, if enabled.

 	'PATH_TRANSLATED'

 	

 Filesystem- (not document root-) based path to the current
 script, after the server has done any virtual-to-real
 mapping.

 Note:

 Apache 2 users may use AcceptPathInfo = On inside
 httpd.conf to define PATH_INFO.

 	'SCRIPT_NAME'

 	

 Contains the current script's path. This is useful for pages
 which need to point to themselves.
 The __FILE__
 constant contains the full path and filename of the current (i.e.
 included) file.

 	'REQUEST_URI'

 	

 The URI which was given in order to access this page; for
 instance, '/index.html'.

 	'PHP_AUTH_DIGEST'

 	

 When doing Digest HTTP authentication this variable is set
 to the 'Authorization' header sent by the client (which you
 should then use to make the appropriate validation).

 	'PHP_AUTH_USER'

 	

 When doing HTTP authentication this variable is set to the
 username provided by the user.

 	'PHP_AUTH_PW'

 	

 When doing HTTP authentication this variable is set to the
 password provided by the user.

 	'AUTH_TYPE'

 	

 When doing HTTP authentication this variable is set to the
 authentication type.

 	'PATH_INFO'

 	

 Contains any client-provided pathname information trailing the
 actual script filename but preceding the query string, if available.
 For instance, if the current script was accessed via the URI
 http://www.example.com/php/path_info.php/some/stuff?foo=bar,
 then $_SERVER['PATH_INFO'] would
 contain /some/stuff.

 	'ORIG_PATH_INFO'

 	

 Original version of 'PATH_INFO' before processed by
 PHP.

 Examples

 Example #1 $_SERVER example

<?php
echo $_SERVER['SERVER_NAME'];
?>

 The above example will output
something similar to:

www.example.com

 Notes

 Note: This is a 'superglobal', or
automatic global, variable. This simply means that it is available in
all scopes throughout a script. There is no need to do
global $variable; to access it within functions or methods.

 See Also

 	The filter extension

 $_GET

 (PHP 4 >= 4.1.0, PHP 5, PHP 7, PHP 8)
$_GET HTTP GET variables

 Description

 An associative array of variables passed to the current script
 via the URL parameters (aka. query string). Note that the array is not only
 populated for GET requests, but rather for all requests with a query string.

 Examples

 Example #1 $_GET example

<?php
echo 'Hello ' . htmlspecialchars($_GET["name"]) . '!';
?>

 Assuming the user entered http://example.com/?name=Hannes

 The above example will output
something similar to:

Hello Hannes!

 Notes

 Note: This is a 'superglobal', or
automatic global, variable. This simply means that it is available in
all scopes throughout a script. There is no need to do
global $variable; to access it within functions or methods.

 Note:

 The GET variables are passed through urldecode().

 See Also

 	Handling external variables

 	The filter extension

 $_POST

 (PHP 4 >= 4.1.0, PHP 5, PHP 7, PHP 8)
$_POST HTTP POST variables

 Description

 An associative array of variables passed to the current script
 via the HTTP POST method when using application/x-www-form-urlencoded
 or multipart/form-data as the HTTP Content-Type in the request.

 Examples

 Example #1 $_POST example

<?php
echo 'Hello ' . htmlspecialchars($_POST["name"]) . '!';
?>

 Assuming the user POSTed name=Hannes

 The above example will output
something similar to:

Hello Hannes!

 Notes

 Note: This is a 'superglobal', or
automatic global, variable. This simply means that it is available in
all scopes throughout a script. There is no need to do
global $variable; to access it within functions or methods.

 See Also

 	Handling external variables

 	The filter extension

 $_FILES

 (PHP 4 >= 4.1.0, PHP 5, PHP 7, PHP 8)
$_FILES HTTP File Upload variables

 Description

 An associative array of items uploaded to the current script
 via the HTTP POST method. The structure of this array is outlined in the
 POST method uploads
 section.

 Notes

 Note: This is a 'superglobal', or
automatic global, variable. This simply means that it is available in
all scopes throughout a script. There is no need to do
global $variable; to access it within functions or methods.

 See Also

 	move_uploaded_file() - Moves an uploaded file to a new location

 	Handling File Uploads

 $_REQUEST

 (PHP 4 >= 4.1.0, PHP 5, PHP 7, PHP 8)
$_REQUEST HTTP Request variables

 Description

 An associative array that by default contains the contents of
 $_GET,
 $_POST and
 $_COOKIE.

 Notes

 Note: This is a 'superglobal', or
automatic global, variable. This simply means that it is available in
all scopes throughout a script. There is no need to do
global $variable; to access it within functions or methods.

 Note:

 When running on the command line
 , this will not include the
 argv and
 argc entries; these are
 present in the $_SERVER
 array.

 Note:

 The variables in $_REQUEST are provided to the
 script via the GET, POST, and COOKIE input mechanisms and
 therefore could be modified by the remote user and cannot be
 trusted. The presence and order of variables listed in this array
 is defined according to the PHP
 request_order, and
 variables_order
 configuration directives.

 See Also

 	Handling external variables

 	The filter extension

 $_SESSION

 (PHP 4 >= 4.1.0, PHP 5, PHP 7, PHP 8)
$_SESSION Session variables

 Description

 An associative array containing session variables available to
 the current script. See the Session
 functions documentation for more information on how this
 is used.

 Notes

 Note: This is a 'superglobal', or
automatic global, variable. This simply means that it is available in
all scopes throughout a script. There is no need to do
global $variable; to access it within functions or methods.

 See Also

 	session_start() - Start new or resume existing session

 $_ENV

 (PHP 4 >= 4.1.0, PHP 5, PHP 7, PHP 8)
$_ENV Environment variables

 Description

 An associative array of variables passed to the current script
 via the environment method.

 These variables are imported into PHP's global namespace from the
 environment under which the PHP parser is running. Many are
 provided by the shell under which PHP is running and different
 systems are likely running different kinds of shells, a
 definitive list is impossible. Please see your shell's
 documentation for a list of defined environment variables.

 Other environment variables include the CGI variables, placed
 there regardless of whether PHP is running as a server module or
 CGI processor.

 Examples

 Example #1 $_ENV example

<?php
echo 'My username is ' .$_ENV["USER"] . '!';
?>

 Assuming "bjori" executes this script

 The above example will output
something similar to:

My username is bjori!

 Notes

 Note: This is a 'superglobal', or
automatic global, variable. This simply means that it is available in
all scopes throughout a script. There is no need to do
global $variable; to access it within functions or methods.

 See Also

 	getenv() - Gets the value of a single or all environment variables

 	The filter extension

 $_COOKIE

 (PHP 4 >= 4.1.0, PHP 5, PHP 7, PHP 8)
$_COOKIE HTTP Cookies

 Description

 An associative array of variables passed to the current script
 via HTTP Cookies.

 Examples

 Example #1 $_COOKIE example

<?php
echo 'Hello ' . htmlspecialchars($_COOKIE["name"]) . '!';
?>

 Assuming the "name" cookie has been set earlier

 The above example will output
something similar to:

Hello Hannes!

 Notes

 Note: This is a 'superglobal', or
automatic global, variable. This simply means that it is available in
all scopes throughout a script. There is no need to do
global $variable; to access it within functions or methods.

 See Also

 	setcookie() - Send a cookie

 	Handling external variables

 	The filter extension

 $php_errormsg

 (PHP 4, PHP 5, PHP 7)
$php_errormsg The previous error message

 WarningThis feature has been
DEPRECATED as of PHP 7.2.0. Relying on this feature
is highly discouraged.

 Use error_get_last() instead.

 Description

 $php_errormsg is a variable containing the
 text of the last error message generated by PHP. This variable
 will only be available within the scope in which the error
 occurred, and only if the track_errors configuration
 option is turned on (it defaults to off).

 Warning

 If a user defined error handler (set_error_handler())
 is set $php_errormsg is only set if the error handler
 returns false.

 Changelog

 	Version
 	Description

 	8.0.0
 	
 Directive track_errors which
 caused $php_errormsg to be available has been
 removed.

 	7.2.0
 	
 Directive track_errors which
 caused $php_errormsg to be available has been
 deprecated.

 Examples

 Example #1 $php_errormsg example

<?php
@strpos();
echo $php_errormsg;
?>

 The above example will output
something similar to:

Wrong parameter count for strpos()

 See Also

 	error_get_last() - Get the last occurred error

 $http_response_header

 (PHP 4 >= 4.0.4, PHP 5, PHP 7, PHP 8)
$http_response_header HTTP response headers

 Description

 The $http_response_header array is similar to the
 get_headers() function. When using the
 HTTP wrapper,
 $http_response_header will be populated with the HTTP
 response headers. $http_response_header will be created
 in the local scope.

 Examples

 Example #1 $http_response_header example

<?php
function get_contents() {
 file_get_contents("http://example.com");
 var_dump($http_response_header); // variable is populated in the local scope
}
get_contents();
var_dump($http_response_header); // a call to get_contents() does not populate the variable outside the function scope
?>

 The above example will output
something similar to:

array(9) {
 [0]=>
 string(15) "HTTP/1.1 200 OK"
 [1]=>
 string(35) "Date: Sat, 12 Apr 2008 17:30:38 GMT"
 [2]=>
 string(29) "Server: Apache/2.2.3 (CentOS)"
 [3]=>
 string(44) "Last-Modified: Tue, 15 Nov 2005 13:24:10 GMT"
 [4]=>
 string(27) "ETag: "280100-1b6-80bfd280""
 [5]=>
 string(20) "Accept-Ranges: bytes"
 [6]=>
 string(19) "Content-Length: 438"
 [7]=>
 string(17) "Connection: close"
 [8]=>
 string(38) "Content-Type: text/html; charset=UTF-8"
}

Warning: Undefined variable $http_response_header
NULL

 $argc

 (PHP 4, PHP 5, PHP 7, PHP 8)
$argc The number of arguments passed to script

 Description

 Contains the number of arguments passed to the current script when running
 from the command line.

 Note:

 The script's filename is always passed as an argument to the script, therefore
 the minimum value of $argc is 1.

 Note:

 This variable is not available when register_argc_argv
 is disabled.

 Examples

 Example #1 $argc example

<?php
var_dump($argc);
?>

 When executing the example with: php script.php arg1 arg2 arg3

 The above example will output
something similar to:

int(4)

 Notes

 Note:

 This is also available as $_SERVER['argc'].

 See Also

 	getopt() - Gets options from the command line argument list

 	$argv

 $argv

 (PHP 4, PHP 5, PHP 7, PHP 8)
$argv Array of arguments passed to script

 Description

 Contains an array of all the arguments passed to the script when running
 from the command line.

 Note:

 The first argument $argv[0] is always the name that was
 used to run the script.

 Note:

 This variable is not available when register_argc_argv
 is disabled.

 Examples

 Example #1 $argv example

<?php
var_dump($argv);
?>

 When executing the example with: php script.php arg1 arg2 arg3

 The above example will output
something similar to:

array(4) {
 [0]=>
 string(10) "script.php"
 [1]=>
 string(4) "arg1"
 [2]=>
 string(4) "arg2"
 [3]=>
 string(4) "arg3"
}

 Notes

 Note:

 This is also available as $_SERVER['argv'].

 See Also

 	getopt() - Gets options from the command line argument list

 	$argc

 Predefined Exceptions

Table of Contents
	Exception
	ErrorException
	ClosedGeneratorException
	Error
	ArgumentCountError
	ArithmeticError
	AssertionError
	DivisionByZeroError
	CompileError
	ParseError
	TypeError
	ValueError
	UnhandledMatchError
	FiberError

 See also the SPL Exceptions

 Exception

 (PHP 5, PHP 7, PHP 8)

 Introduction

 Exception is the base class for
 all user exceptions.

 Class synopsis

 class Exception

 implements
 Throwable {

 /* Properties */

 protected
 string
 $message = "";

 private
 string
 $string = "";

 protected
 int
 $code;

 protected
 string
 $file = "";

 protected
 int
 $line;

 private
 array
 $trace = [];

 private
 ?Throwable
 $previous = null;

 /* Methods */

 public __construct(string $message = "", int $code = 0, ?Throwable $previous = null)

 final public getMessage(): string

final public getPrevious(): ?Throwable

final public getCode(): int

final public getFile(): string

final public getLine(): int

final public getTrace(): array

final public getTraceAsString(): string

public __toString(): string

private __clone(): void

 }

 Properties

 	message

 	
 The exception message

 	code

 	
 The exception code

 	file

 	
 The filename where the exception was created

 	line

 	
 The line where the exception was created

 	previous

 	
 The previously thrown exception

 	string

 	
 The string representation of the stack trace

 	trace

 	
 The stack trace as an array

Table of Contents
	Exception::__construct — Construct the exception
	Exception::getMessage — Gets the Exception message
	Exception::getPrevious — Returns previous Throwable
	Exception::getCode — Gets the Exception code
	Exception::getFile — Gets the file in which the exception was created
	Exception::getLine — Gets the line in which the exception was created
	Exception::getTrace — Gets the stack trace
	Exception::getTraceAsString — Gets the stack trace as a string
	Exception::__toString — String representation of the exception
	Exception::__clone — Clone the exception

 Exception::__construct

 (PHP 5, PHP 7, PHP 8)
Exception::__construct Construct the exception

 Description

 public Exception::__construct(string $message = "", int $code = 0, ?Throwable $previous = null)

 Constructs the Exception.

 Parameters

 	message

 	

 The Exception message to throw.

 	code

 	

 The Exception code.

 	previous

 	

 The previous exception used for the exception chaining.

 Note:

 Calling the constructor of class Exception from a subclass ignores the
 default arguments, if the properties $code and $message are already set.

 Notes

 Note:

 The message is NOT
 binary safe.

 Exception::getMessage

 (PHP 5, PHP 7, PHP 8)
Exception::getMessage Gets the Exception message

 Description

 final public Exception::getMessage(): string

 Returns the Exception message.

 Parameters

 This function has no parameters.

 Return Values

 Returns the Exception message as a string.

 Examples

 Example #1 Exception::getMessage() example

<?php
try {
 throw new Exception("Some error message");
} catch(Exception $e) {
 echo $e->getMessage();
}
?>

 The above example will output
something similar to:

Some error message

 See Also

 	Throwable::getMessage() - Gets the message

 Exception::getPrevious

 (PHP 5 >= 5.3.0, PHP 7, PHP 8)
Exception::getPrevious Returns previous Throwable

 Description

 final public Exception::getPrevious(): ?Throwable

 Returns previous Throwable
 (which had been passed as the third parameter of Exception::__construct()).

 Parameters

 This function has no parameters.

 Return Values

 Returns the previous Throwable if available
 or null otherwise.

 Examples

 Example #1 Exception::getPrevious() example

 Looping over, and printing out, exception trace.

<?php
class MyCustomException extends Exception {}

function doStuff() {
 try {
 throw new InvalidArgumentException("You are doing it wrong!", 112);
 } catch(Exception $e) {
 throw new MyCustomException("Something happened", 911, $e);
 }
}

try {
 doStuff();
} catch(Exception $e) {
 do {
 printf("%s:%d %s (%d) [%s]\n", $e->getFile(), $e->getLine(), $e->getMessage(), $e->getCode(), get_class($e));
 } while($e = $e->getPrevious());
}
?>

 The above example will output
something similar to:

/home/bjori/ex.php:8 Something happened (911) [MyCustomException]
/home/bjori/ex.php:6 You are doing it wrong! (112) [InvalidArgumentException]

 See Also

 	Throwable::getPrevious() - Returns the previous Throwable

 Exception::getCode

 (PHP 5, PHP 7, PHP 8)
Exception::getCode Gets the Exception code

 Description

 final public Exception::getCode(): int

 Returns the Exception code.

 Parameters

 This function has no parameters.

 Return Values

 Returns the exception code as int in
 Exception but possibly as other type in
 Exception descendants (for example as
 string in PDOException).

 Examples

 Example #1 Exception::getCode() example

<?php
try {
 throw new Exception("Some error message", 30);
} catch(Exception $e) {
 echo "The exception code is: " . $e->getCode();
}
?>

 The above example will output
something similar to:

The exception code is: 30

 See Also

 	Throwable::getCode() - Gets the exception code

 Exception::getFile

 (PHP 5, PHP 7, PHP 8)
Exception::getFile Gets the file in which the exception was created

 Description

 final public Exception::getFile(): string

 Get the name of the file in which the exception was created.

 Parameters

 This function has no parameters.

 Return Values

 Returns the filename in which the exception was created.

 Examples

 Example #1 Exception::getFile() example

<?php
try {
 throw new Exception;
} catch(Exception $e) {
 echo $e->getFile();
}
?>

 The above example will output
something similar to:

/home/bjori/tmp/ex.php

 See Also

 	Throwable::getFile() - Gets the file in which the object was created

 Exception::getLine

 (PHP 5, PHP 7, PHP 8)
Exception::getLine Gets the line in which the exception was created

 Description

 final public Exception::getLine(): int

 Get line number where the exception was created.

 Parameters

 This function has no parameters.

 Return Values

 Returns the line number where the exception was created.

 Examples

 Example #1 Exception::getLine() example

<?php
try {
 throw new Exception("Some error message");
} catch(Exception $e) {
 echo "The exception was created on line: " . $e->getLine();
}
?>

 The above example will output
something similar to:

The exception was created on line: 3

 See Also

 	Throwable::getLine() - Gets the line on which the object was instantiated

 Exception::getTrace

 (PHP 5, PHP 7, PHP 8)
Exception::getTrace Gets the stack trace

 Description

 final public Exception::getTrace(): array

 Returns the Exception stack trace.

 Parameters

 This function has no parameters.

 Return Values

 Returns the Exception stack trace as an array.

 Examples

 Example #1 Exception::getTrace() example

<?php
function test() {
 throw new Exception;
}

try {
 test();
} catch(Exception $e) {
 var_dump($e->getTrace());
}
?>

 The above example will output
something similar to:

array(1) {
 [0]=>
 array(4) {
 ["file"]=>
 string(22) "/home/bjori/tmp/ex.php"
 ["line"]=>
 int(7)
 ["function"]=>
 string(4) "test"
 ["args"]=>
 array(0) {
 }
 }
}

 See Also

 	Throwable::getTrace() - Gets the stack trace

 Exception::getTraceAsString

 (PHP 5, PHP 7, PHP 8)
Exception::getTraceAsString Gets the stack trace as a string

 Description

 final public Exception::getTraceAsString(): string

 Returns the Exception stack trace as a string.

 Parameters

 This function has no parameters.

 Return Values

 Returns the Exception stack trace as a string.

 Examples

 Example #1 Exception::getTraceAsString() example

<?php
function test() {
 throw new Exception;
}

try {
 test();
} catch(Exception $e) {
 echo $e->getTraceAsString();
}
?>

 The above example will output
something similar to:

#0 /home/bjori/tmp/ex.php(7): test()
#1 {main}

 See Also

 	Throwable::getTraceAsString() - Gets the stack trace as a string

 Exception::__toString

 (PHP 5, PHP 7, PHP 8)
Exception::__toString String representation of the exception

 Description

 public Exception::__toString(): string

 Returns the string representation of the exception.

 Parameters

 This function has no parameters.

 Return Values

 Returns the string representation of the exception.

 Examples

 Example #1 Exception::__toString() example

<?php
try {
 throw new Exception("Some error message");
} catch(Exception $e) {
 echo $e;
}
?>

 The above example will output
something similar to:

exception 'Exception' with message 'Some error message' in /home/bjori/tmp/ex.php:3
Stack trace:
#0 {main}

 See Also

 	Throwable::__toString() - Gets a string representation of the thrown object

 Exception::__clone

 (PHP 5, PHP 7, PHP 8)
Exception::__clone Clone the exception

 Description

 private Exception::__clone(): void

 Exceptions cannot be cloned,
 and attempting to do so will throw an Error.

 Parameters

 This function has no parameters.

 Return Values

 No value is returned.

 Errors/Exceptions

 Exceptions are not clonable.

 Changelog

 	Version
 	Description

 	8.1.0
 	
 Exception::__clone() is no longer final.

 ErrorException

 (PHP 5 >= 5.1.0, PHP 7, PHP 8)

 Introduction

 An Error Exception.

 Class synopsis

 class ErrorException

 extends
 Exception
 {

 /* Properties */

 protected
 int
 $severity = E_ERROR;

 /* Inherited properties */

 protected
 string
 $message = "";

private
 string
 $string = "";

protected
 int
 $code;

protected
 string
 $file = "";

protected
 int
 $line;

private
 array
 $trace = [];

private
 ?Throwable
 $previous = null;

 /* Methods */

 public __construct(string $message = "",int $code = 0,int $severity = E_ERROR,?string $filename = null,?int $line = null,?Throwable $previous = null)

 Constructs the exception

 ErrorException::__construct

 (PHP 5 >= 5.1.0, PHP 7, PHP 8)
ErrorException::__construct Constructs the exception

 Description

 public ErrorException::__construct(string $message = "",int $code = 0,int $severity = E_ERROR,?string $filename = null,?int $line = null,?Throwable $previous = null)

 Gets the exception severity

 ErrorException::getSeverity

 (PHP 5 >= 5.1.0, PHP 7, PHP 8)
ErrorException::getSeverity Gets the exception severity

 Description

 final public ErrorException::getSeverity(): int

 Returns the severity of the exception.

 Parameters

 This function has no parameters.

 Return Values

 Returns the severity level of the exception.

 Examples

 Example #1 ErrorException::getSeverity() example

<?php
try {
 throw new ErrorException("Exception message", 0, E_USER_ERROR);
} catch(ErrorException $e) {
 echo "This exception severity is: " . $e->getSeverity();
 var_dump($e->getSeverity() === E_USER_ERROR);
}
?>

 The above example will output
something similar to:

This exception severity is: 256
bool(true)

 The ClosedGeneratorException class

 The ClosedGeneratorException class

 (PHP 5 >= 5.5.0, PHP 7, PHP 8)

 Introduction

 A ClosedGeneratorException is thrown when trying
 to retrieve a value from a closed Generator.

 Class synopsis

 class ClosedGeneratorException

 extends
 Exception
 {

 /* Inherited properties */

 protected
 string
 $message = "";

private
 string
 $string = "";

protected
 int
 $code;

protected
 string
 $file = "";

protected
 int
 $line;

private
 array
 $trace = [];

private
 ?Throwable
 $previous = null;

 /* Inherited methods */

 public Exception::__construct(string $message = "", int $code = 0, ?Throwable $previous = null)

 final public Exception::getMessage(): string

final public Exception::getPrevious(): ?Throwable

final public Exception::getCode(): int

final public Exception::getFile(): string

final public Exception::getLine(): int

final public Exception::getTrace(): array

final public Exception::getTraceAsString(): string

public Exception::__toString(): string

private Exception::__clone(): void

 }

 Error

 Error

 (PHP 7, PHP 8)

 Introduction

 Error is the base class for all
 internal PHP errors.

 Class synopsis

 class Error

 implements
 Throwable {

 /* Properties */

 protected
 string
 $message = "";

 private
 string
 $string = "";

 protected
 int
 $code;

 protected
 string
 $file = "";

 protected
 int
 $line;

 private
 array
 $trace = [];

 private
 ?Throwable
 $previous = null;

 /* Methods */

 public __construct(string $message = "", int $code = 0, ?Throwable $previous = null)

 final public getMessage(): string

final public getPrevious(): ?Throwable

final public getCode(): int

final public getFile(): string

final public getLine(): int

final public getTrace(): array

final public getTraceAsString(): string

public __toString(): string

private __clone(): void

 }

 Properties

 	message

 	
 The error message

 	code

 	
 The error code

 	file

 	
 The filename where the error happened

 	line

 	
 The line where the error happened

 	previous

 	
 The previously thrown exception

 	string

 	
 The string representation of the stack trace

 	trace

 	
 The stack trace as an array

Table of Contents
	Error::__construct — Construct the error object
	Error::getMessage — Gets the error message
	Error::getPrevious — Returns previous Throwable
	Error::getCode — Gets the error code
	Error::getFile — Gets the file in which the error occurred
	Error::getLine — Gets the line in which the error occurred
	Error::getTrace — Gets the stack trace
	Error::getTraceAsString — Gets the stack trace as a string
	Error::__toString — String representation of the error
	Error::__clone — Clone the error

 Construct the error object

 Error::__construct

 (PHP 7, PHP 8)
Error::__construct Construct the error object

 Description

 public Error::__construct(string $message = "", int $code = 0, ?Throwable $previous = null)

 Constructs the Error.

 Parameters

 	message

 	

 The error message.

 	code

 	

 The error code.

 	previous

 	

 The previous throwable used for the exception chaining.

 Notes

 Note:

 The message is NOT
 binary safe.

 Gets the error message

 Error::getMessage

 (PHP 7, PHP 8)
Error::getMessage Gets the error message

 Description

 final public Error::getMessage(): string

 Returns the error message.

 Parameters

 This function has no parameters.

 Return Values

 Returns the error message as a string.

 Examples

 Example #1 Error::getMessage() example

<?php
try {
 throw new Error("Some error message");
} catch(Error $e) {
 echo $e->getMessage();
}
?>

 The above example will output
something similar to:

Some error message

 See Also

 	Throwable::getMessage() - Gets the message

 Returns previous Throwable

 Error::getPrevious

 (PHP 7, PHP 8)
Error::getPrevious Returns previous Throwable

 Description

 final public Error::getPrevious(): ?Throwable

 Returns previous Throwable (the third parameter of Error::__construct()).

 Parameters

 This function has no parameters.

 Return Values

 Returns the previous Throwable if available
 or null otherwise.

 Examples

 Example #1 Error::getPrevious() example

 Looping over, and printing out, error trace.

<?php
class MyCustomError extends Error {}

function doStuff() {
 try {
 throw new InvalidArgumentError("You are doing it wrong!", 112);
 } catch(Error $e) {
 throw new MyCustomError("Something happened", 911, $e);
 }
}

try {
 doStuff();
} catch(Error $e) {
 do {
 printf("%s:%d %s (%d) [%s]\n", $e->getFile(), $e->getLine(), $e->getMessage(), $e->getCode(), get_class($e));
 } while($e = $e->getPrevious());
}
?>

 The above example will output
something similar to:

/home/bjori/ex.php:8 Something happened (911) [MyCustomError]
/home/bjori/ex.php:6 You are doing it wrong! (112) [InvalidArgumentError]

 See Also

 	Throwable::getPrevious() - Returns the previous Throwable

 Gets the error code

 Error::getCode

 (PHP 7, PHP 8)
Error::getCode Gets the error code

 Description

 final public Error::getCode(): int

 Returns the error code.

 Parameters

 This function has no parameters.

 Return Values

 Returns the error code as int

 Examples

 Example #1 Error::getCode() example

<?php
try {
 throw new Error("Some error message", 30);
} catch(Error $e) {
 echo "The Error code is: " . $e->getCode();
}
?>

 The above example will output
something similar to:

The Error code is: 30

 See Also

 	Throwable::getCode() - Gets the exception code

 Gets the file in which the error occurred

 Error::getFile

 (PHP 7, PHP 8)
Error::getFile Gets the file in which the error occurred

 Description

 final public Error::getFile(): string

 Get the name of the file the error occurred.

 Parameters

 This function has no parameters.

 Return Values

 Returns the filename in which the error occurred.

 Examples

 Example #1 Error::getFile() example

<?php
try {
 throw new Error;
} catch(Error $e) {
 echo $e->getFile();
}
?>

 The above example will output
something similar to:

/home/bjori/tmp/ex.php

 See Also

 	Throwable::getFile() - Gets the file in which the object was created

 Gets the line in which the error occurred

 Error::getLine

 (PHP 7, PHP 8)
Error::getLine Gets the line in which the error occurred

 Description

 final public Error::getLine(): int

 Get line number where the error occurred.

 Parameters

 This function has no parameters.

 Return Values

 Returns the line number where the error occurred.

 Examples

 Example #1 Error::getLine() example

<?php
try {
 throw new Error("Some error message");
} catch(Error $e) {
 echo "The error was created on line: " . $e->getLine();
}
?>

 The above example will output
something similar to:

The error was created on line: 3

 See Also

 	Throwable::getLine() - Gets the line on which the object was instantiated

 Gets the stack trace

 Error::getTrace

 (PHP 7, PHP 8)
Error::getTrace Gets the stack trace

 Description

 final public Error::getTrace(): array

 Returns the stack trace.

 Parameters

 This function has no parameters.

 Return Values

 Returns the stack trace as an array.

 Examples

 Example #1 Error::getTrace() example

<?php
function test() {
 throw new Error;
}

try {
 test();
} catch(Error $e) {
 var_dump($e->getTrace());
}
?>

 The above example will output
something similar to:

array(1) {
 [0]=>
 array(4) {
 ["file"]=>
 string(22) "/home/bjori/tmp/ex.php"
 ["line"]=>
 int(7)
 ["function"]=>
 string(4) "test"
 ["args"]=>
 array(0) {
 }
 }
}

 See Also

 	Throwable::getTrace() - Gets the stack trace

 Gets the stack trace as a string

 Error::getTraceAsString

 (PHP 7, PHP 8)
Error::getTraceAsString Gets the stack trace as a string

 Description

 final public Error::getTraceAsString(): string

 Returns the stack trace as a string.

 Parameters

 This function has no parameters.

 Return Values

 Returns the stack trace as a string.

 Examples

 Example #1 Error::getTraceAsString() example

<?php
function test() {
 throw new Error;
}

try {
 test();
} catch(Error $e) {
 echo $e->getTraceAsString();
}
?>

 The above example will output
something similar to:

#0 /home/bjori/tmp/ex.php(7): test()
#1 {main}

 See Also

 	Throwable::getTraceAsString() - Gets the stack trace as a string

 String representation of the error

 Error::__toString

 (PHP 7, PHP 8)
Error::__toString String representation of the error

 Description

 public Error::__toString(): string

 Returns the string representation of the error.

 Parameters

 This function has no parameters.

 Return Values

 Returns the string representation of the error.

 Examples

 Example #1 Error::__toString() example

<?php
try {
 throw new Error("Some error message");
} catch(Error $e) {
 echo $e;
}
?>

 The above example will output
something similar to:

Error: Some error message in /home/bjori/tmp/ex.php:3
Stack trace:
#0 {main}

 See Also

 	Throwable::__toString() - Gets a string representation of the thrown object

 Clone the error

 Error::__clone

 (PHP 7, PHP 8)
Error::__clone Clone the error

 Description

 private Error::__clone(): void

 Error can not be cloned, so this method results in fatal error.

 Parameters

 This function has no parameters.

 Return Values

 No value is returned.

 Errors/Exceptions

 Errors are not clonable.

 Changelog

 	Version
 	Description

 	8.1.0
 	
 Error::__clone() is no longer final.

 ArgumentCountError

 ArgumentCountError

 (PHP 7 >= PHP 7.1.0, PHP 8)

 Introduction

 ArgumentCountError is thrown
 when too few arguments are passed to a user-defined function or method.

 This error is also thrown when too many arguments are passed to a
 non-variadic built-in function.

 Class synopsis

 class ArgumentCountError

 extends
 TypeError
 {

 /* Inherited properties */

 protected
 string
 $message = "";

private
 string
 $string = "";

protected
 int
 $code;

protected
 string
 $file = "";

protected
 int
 $line;

private
 array
 $trace = [];

private
 ?Throwable
 $previous = null;

 /* Inherited methods */

 public Error::__construct(string $message = "", int $code = 0, ?Throwable $previous = null)

 final public Error::getMessage(): string

final public Error::getPrevious(): ?Throwable

final public Error::getCode(): int

final public Error::getFile(): string

final public Error::getLine(): int

final public Error::getTrace(): array

final public Error::getTraceAsString(): string

public Error::__toString(): string

private Error::__clone(): void

 }

 ArithmeticError

 ArithmeticError

 (PHP 7, PHP 8)

 Introduction

 ArithmeticError is thrown when
 an error occurs while performing mathematical operations.
 These errors include attempting to perform a bitshift by a negative
 amount, and any call to intdiv() that would result in a
 value outside the possible bounds of an int.

 Class synopsis

 class ArithmeticError

 extends
 Error
 {

 /* Inherited properties */

 protected
 string
 $message = "";

private
 string
 $string = "";

protected
 int
 $code;

protected
 string
 $file = "";

protected
 int
 $line;

private
 array
 $trace = [];

private
 ?Throwable
 $previous = null;

 /* Inherited methods */

 public Error::__construct(string $message = "", int $code = 0, ?Throwable $previous = null)

 final public Error::getMessage(): string

final public Error::getPrevious(): ?Throwable

final public Error::getCode(): int

final public Error::getFile(): string

final public Error::getLine(): int

final public Error::getTrace(): array

final public Error::getTraceAsString(): string

public Error::__toString(): string

private Error::__clone(): void

 }

 AssertionError

 AssertionError

 (PHP 7, PHP 8)

 Introduction

 AssertionError is thrown when
 an assertion made via assert() fails.

 Class synopsis

 class AssertionError

 extends
 Error
 {

 /* Inherited properties */

 protected
 string
 $message = "";

private
 string
 $string = "";

protected
 int
 $code;

protected
 string
 $file = "";

protected
 int
 $line;

private
 array
 $trace = [];

private
 ?Throwable
 $previous = null;

 /* Inherited methods */

 public Error::__construct(string $message = "", int $code = 0, ?Throwable $previous = null)

 final public Error::getMessage(): string

final public Error::getPrevious(): ?Throwable

final public Error::getCode(): int

final public Error::getFile(): string

final public Error::getLine(): int

final public Error::getTrace(): array

final public Error::getTraceAsString(): string

public Error::__toString(): string

private Error::__clone(): void

 }

 DivisionByZeroError

 DivisionByZeroError

 (PHP 7, PHP 8)

 Introduction

 DivisionByZeroError is thrown
 when an attempt is made to divide a number by zero.

 Class synopsis

 class DivisionByZeroError

 extends
 ArithmeticError
 {

 /* Inherited properties */

 protected
 string
 $message = "";

private
 string
 $string = "";

protected
 int
 $code;

protected
 string
 $file = "";

protected
 int
 $line;

private
 array
 $trace = [];

private
 ?Throwable
 $previous = null;

 /* Inherited methods */

 public Error::__construct(string $message = "", int $code = 0, ?Throwable $previous = null)

 final public Error::getMessage(): string

final public Error::getPrevious(): ?Throwable

final public Error::getCode(): int

final public Error::getFile(): string

final public Error::getLine(): int

final public Error::getTrace(): array

final public Error::getTraceAsString(): string

public Error::__toString(): string

private Error::__clone(): void

 }

 CompileError

 CompileError

 (PHP 7 > 7.3.0, PHP 8)

 Introduction

 CompileError is thrown for some
 compilation errors, which formerly issued a fatal error.

 Class synopsis

 class CompileError

 extends
 Error
 {

 /* Inherited properties */

 protected
 string
 $message = "";

private
 string
 $string = "";

protected
 int
 $code;

protected
 string
 $file = "";

protected
 int
 $line;

private
 array
 $trace = [];

private
 ?Throwable
 $previous = null;

 /* Inherited methods */

 public Error::__construct(string $message = "", int $code = 0, ?Throwable $previous = null)

 final public Error::getMessage(): string

final public Error::getPrevious(): ?Throwable

final public Error::getCode(): int

final public Error::getFile(): string

final public Error::getLine(): int

final public Error::getTrace(): array

final public Error::getTraceAsString(): string

public Error::__toString(): string

private Error::__clone(): void

 }

 ParseError

 ParseError

 (PHP 7, PHP 8)

 Introduction

 ParseError is thrown when an
 error occurs while parsing PHP code, such as when
 eval() is called.

 Note:

 ParseError extends CompileError
 as of PHP 7.3.0. Formerly, it extended Error.

 Class synopsis

 class ParseError

 extends
 CompileError
 {

 /* Inherited properties */

 protected
 string
 $message = "";

private
 string
 $string = "";

protected
 int
 $code;

protected
 string
 $file = "";

protected
 int
 $line;

private
 array
 $trace = [];

private
 ?Throwable
 $previous = null;

 /* Inherited methods */

 public Error::__construct(string $message = "", int $code = 0, ?Throwable $previous = null)

 final public Error::getMessage(): string

final public Error::getPrevious(): ?Throwable

final public Error::getCode(): int

final public Error::getFile(): string

final public Error::getLine(): int

final public Error::getTrace(): array

final public Error::getTraceAsString(): string

public Error::__toString(): string

private Error::__clone(): void

 }

 TypeError

 TypeError

 (PHP 7, PHP 8)

 Introduction

 A TypeError may be thrown when:

 	
 The value being set for a class property does not match
 the property's corresponding declared type.

 	
 The argument type being passed to a function does not match
 its corresponding declared parameter type.

 	
 A value being returned from a function does not match the
 declared function return type.

 Class synopsis

 class TypeError

 extends
 Error
 {

 /* Inherited properties */

 protected
 string
 $message = "";

private
 string
 $string = "";

protected
 int
 $code;

protected
 string
 $file = "";

protected
 int
 $line;

private
 array
 $trace = [];

private
 ?Throwable
 $previous = null;

 /* Inherited methods */

 public Error::__construct(string $message = "", int $code = 0, ?Throwable $previous = null)

 final public Error::getMessage(): string

final public Error::getPrevious(): ?Throwable

final public Error::getCode(): int

final public Error::getFile(): string

final public Error::getLine(): int

final public Error::getTrace(): array

final public Error::getTraceAsString(): string

public Error::__toString(): string

private Error::__clone(): void

 }

 Changelog

 	Version
 	Description

 	7.1.0
 	
 A TypeError is no longer thrown when
 an invalid number of arguments are passed to a built-in PHP function
 in strict mode.
 Instead, an ArgumentCountError is raised.

 ValueError

 ValueError

 (PHP 8)

 Introduction

 A ValueError is thrown when the
 type of an argument is correct but the value of it is incorrect.
 For example, passing a negative integer when the function expects a
 positive one, or passing an empty string/array when the function expects
 it to not be empty.

 Class synopsis

 class ValueError

 extends
 Error
 {

 /* Inherited properties */

 protected
 string
 $message = "";

private
 string
 $string = "";

protected
 int
 $code;

protected
 string
 $file = "";

protected
 int
 $line;

private
 array
 $trace = [];

private
 ?Throwable
 $previous = null;

 /* Inherited methods */

 public Error::__construct(string $message = "", int $code = 0, ?Throwable $previous = null)

 final public Error::getMessage(): string

final public Error::getPrevious(): ?Throwable

final public Error::getCode(): int

final public Error::getFile(): string

final public Error::getLine(): int

final public Error::getTrace(): array

final public Error::getTraceAsString(): string

public Error::__toString(): string

private Error::__clone(): void

 }

 UnhandledMatchError

 UnhandledMatchError

 (PHP 8)

 Introduction

 An UnhandledMatchError is thrown
 when the subject passed to a match expression is not handled by any arm
 of the match expression.

 Class synopsis

 class UnhandledMatchError

 extends
 Error
 {

 /* Inherited properties */

 protected
 string
 $message = "";

private
 string
 $string = "";

protected
 int
 $code;

protected
 string
 $file = "";

protected
 int
 $line;

private
 array
 $trace = [];

private
 ?Throwable
 $previous = null;

 /* Inherited methods */

 public Error::__construct(string $message = "", int $code = 0, ?Throwable $previous = null)

 final public Error::getMessage(): string

final public Error::getPrevious(): ?Throwable

final public Error::getCode(): int

final public Error::getFile(): string

final public Error::getLine(): int

final public Error::getTrace(): array

final public Error::getTraceAsString(): string

public Error::__toString(): string

private Error::__clone(): void

 }

 FiberError

 FiberError

 (PHP 8 >= 8.1.0)

 Introduction

 FiberError is thrown
 when an invalid operation is performed on a Fiber.

 Class synopsis

 final
 class FiberError

 extends
 Error
 {

 /* Inherited properties */

 protected
 string
 $message = "";

private
 string
 $string = "";

protected
 int
 $code;

protected
 string
 $file = "";

protected
 int
 $line;

private
 array
 $trace = [];

private
 ?Throwable
 $previous = null;

 /* Methods */

 public __construct()

 /* Inherited methods */

 final public Error::getMessage(): string

final public Error::getPrevious(): ?Throwable

final public Error::getCode(): int

final public Error::getFile(): string

final public Error::getLine(): int

final public Error::getTrace(): array

final public Error::getTraceAsString(): string

public Error::__toString(): string

private Error::__clone(): void

 }

Table of Contents
	FiberError::__construct — Constructor to disallow direct instantiation

 Constructor to disallow direct instantiation

 FiberError::__construct

 (PHP 8 >= 8.1.0)
FiberError::__construct Constructor to disallow direct instantiation

 Description

 public FiberError::__construct()

 Parameters

 This function has no parameters.

 Errors/Exceptions

 Throws an Error exception when called.

 Predefined Interfaces and Classes

 Predefined Interfaces and Classes

Table of Contents
	Traversable
	Iterator
	IteratorAggregate
	InternalIterator
	Throwable
	ArrayAccess
	Serializable
	Closure
	stdClass
	Generator
	Fiber
	WeakReference
	WeakMap
	Stringable
	UnitEnum
	BackedEnum
	SensitiveParameterValue

 See also the SPL Interfaces and reserved classes.

 The Traversable interface

 The Traversable interface

 (PHP 5, PHP 7, PHP 8)

 Introduction

 Interface to detect if a class is traversable using foreach.

 Abstract base interface that cannot be implemented alone. Instead, it must
 be implemented by either IteratorAggregate or
 Iterator.

 Interface synopsis

 interface Traversable {

 }

 This interface has no methods, its only purpose is to be the base
 interface for all traversable classes.

 Changelog

 	Version
 	Description

 	7.4.0
 	
 The Traversable interface can now be implemented
 by abstract classes. Extending classes must implement
 Iterator or
 IteratorAggregate.

 Notes

 Note:

 Internal (built-in) classes that implement this interface can be used in
 a foreach construct and do not need to implement
 IteratorAggregate or
 Iterator.

 Note:

 Prior to PHP 7.4.0, this internal engine interface couldn't be implemented
 in PHP scripts. Either IteratorAggregate
 or Iterator must be used instead.

 The Iterator interface

 The Iterator interface

 (PHP 5, PHP 7, PHP 8)

 Introduction

 Interface for external iterators or objects that can be iterated
 themselves internally.

 Interface synopsis

 interface Iterator

 extends
 Traversable {

 /* Methods */

 public current(): mixed

public key(): mixed

public next(): void

public rewind(): void

public valid(): bool

 }

 Predefined iterators

 PHP already provides a number of iterators for many day to day tasks.
 See SPL iterators for a list.

 Examples

 Example #1 Basic usage

 This example demonstrates in which order methods are called when
 using foreach with an iterator.

<?php
class myIterator implements Iterator {
 private $position = 0;
 private $array = array(
 "firstelement",
 "secondelement",
 "lastelement",
);

 public function __construct() {
 $this->position = 0;
 }

 public function rewind(): void {
 var_dump(__METHOD__);
 $this->position = 0;
 }

 #[\ReturnTypeWillChange]
 public function current() {
 var_dump(__METHOD__);
 return $this->array[$this->position];
 }

 #[\ReturnTypeWillChange]
 public function key() {
 var_dump(__METHOD__);
 return $this->position;
 }

 public function next(): void {
 var_dump(__METHOD__);
 ++$this->position;
 }

 public function valid(): bool {
 var_dump(__METHOD__);
 return isset($this->array[$this->position]);
 }
}

$it = new myIterator;

foreach($it as $key => $value) {
 var_dump($key, $value);
 echo "\n";
}
?>

 The above example will output
something similar to:

string(18) "myIterator::rewind"
string(17) "myIterator::valid"
string(19) "myIterator::current"
string(15) "myIterator::key"
int(0)
string(12) "firstelement"

string(16) "myIterator::next"
string(17) "myIterator::valid"
string(19) "myIterator::current"
string(15) "myIterator::key"
int(1)
string(13) "secondelement"

string(16) "myIterator::next"
string(17) "myIterator::valid"
string(19) "myIterator::current"
string(15) "myIterator::key"
int(2)
string(11) "lastelement"

string(16) "myIterator::next"
string(17) "myIterator::valid"

 See Also

 See also object iteration.

Table of Contents
	Iterator::current — Return the current element
	Iterator::key — Return the key of the current element
	Iterator::next — Move forward to next element
	Iterator::rewind — Rewind the Iterator to the first element
	Iterator::valid — Checks if current position is valid

 Return the current element

 Iterator::current

 (PHP 5, PHP 7, PHP 8)
Iterator::current Return the current element

 Description

 public Iterator::current(): mixed

 Returns the current element.

 Parameters

 This function has no parameters.

 Return Values

 Can return any type.

 Return the key of the current element

 Iterator::key

 (PHP 5, PHP 7, PHP 8)
Iterator::key Return the key of the current element

 Description

 public Iterator::key(): mixed

 Returns the key of the current element.

 Parameters

 This function has no parameters.

 Return Values

 Returns scalar on success, or null on failure.

 Errors/Exceptions

 Issues E_NOTICE on failure.

 Move forward to next element

 Iterator::next

 (PHP 5, PHP 7, PHP 8)
Iterator::next Move forward to next element

 Description

 public Iterator::next(): void

 Moves the current position to the next element.

 Note:

 This method is called after each
 foreach loop.

 Parameters

 This function has no parameters.

 Return Values

 Any returned value is ignored.

 Rewind the Iterator to the first element

 Iterator::rewind

 (PHP 5, PHP 7, PHP 8)
Iterator::rewind Rewind the Iterator to the first element

 Description

 public Iterator::rewind(): void

 Rewinds back to the first element of the Iterator.

 Note:

 This is the first method called when starting a
 foreach loop. It will not be
 executed after foreach loops.

 Parameters

 This function has no parameters.

 Return Values

 Any returned value is ignored.

 Checks if current position is valid

 Iterator::valid

 (PHP 5, PHP 7, PHP 8)
Iterator::valid Checks if current position is valid

 Description

 public Iterator::valid(): bool

 This method is called after Iterator::rewind() and
 Iterator::next() to check if the current position is
 valid.

 Parameters

 This function has no parameters.

 Return Values

 The return value will be casted to bool and then evaluated.
 Returns true on success or false on failure.

 The IteratorAggregate interface

 The IteratorAggregate interface

 (PHP 5, PHP 7, PHP 8)

 Introduction

 Interface to create an external Iterator.

 Interface synopsis

 interface IteratorAggregate

 extends
 Traversable {

 /* Methods */

 public getIterator(): Traversable

 }

 Examples

 Example #1 Basic usage

<?php

class myData implements IteratorAggregate
{
 public $property1 = "Public property one";
 public $property2 = "Public property two";
 public $property3 = "Public property three";
 public $property4 = "";

 public function __construct()
 {
 $this->property4 = "last property";
 }

 public function getIterator(): Traversable
 {
 return new ArrayIterator($this);
 }
}

$obj = new myData();

foreach ($obj as $key => $value) {
 var_dump($key, $value);
 echo "\n";
}

?>

 The above example will output
something similar to:

string(9) "property1"
string(19) "Public property one"

string(9) "property2"
string(19) "Public property two"

string(9) "property3"
string(21) "Public property three"

string(9) "property4"
string(13) "last property"

Table of Contents
	IteratorAggregate::getIterator — Retrieve an external iterator

 Retrieve an external iterator

 IteratorAggregate::getIterator

 (PHP 5, PHP 7, PHP 8)
IteratorAggregate::getIterator Retrieve an external iterator

 Description

 public IteratorAggregate::getIterator(): Traversable

 Returns an external iterator.

 Parameters

 This function has no parameters.

 Return Values

 An instance of an object implementing Iterator or
 Traversable

 Errors/Exceptions

 Throws an Exception on failure.

 The InternalIterator class

 The InternalIterator class

 (PHP 8)

 Introduction

 Class to ease implementing IteratorAggregate
 for internal classes.

 Class synopsis

 final
 class InternalIterator

 implements
 Iterator {

 /* Methods */

 private __construct()

 public current(): mixed

public key(): mixed

public next(): void

public rewind(): void

public valid(): bool

 }

Table of Contents
	InternalIterator::__construct — Private constructor to disallow direct instantiation
	InternalIterator::current — Return the current element
	InternalIterator::key — Return the key of the current element
	InternalIterator::next — Move forward to next element
	InternalIterator::rewind — Rewind the Iterator to the first element
	InternalIterator::valid — Check if current position is valid

 Private constructor to disallow direct instantiation

 InternalIterator::__construct

 (PHP 8)
InternalIterator::__construct Private constructor to disallow direct instantiation

 Description

 private InternalIterator::__construct()

 Parameters

 This function has no parameters.

 Return the current element

 InternalIterator::current

 (PHP 8)
InternalIterator::current Return the current element

 Description

 public InternalIterator::current(): mixed

 Returns the current element.

 Parameters

 This function has no parameters.

 Return Values

 Returns the current element.

 Return the key of the current element

 InternalIterator::key

 (PHP 8)
InternalIterator::key Return the key of the current element

 Description

 public InternalIterator::key(): mixed

 Returns the key of the current element.

 Parameters

 This function has no parameters.

 Return Values

 Returns the key of the current element.

 Move forward to next element

 InternalIterator::next

 (PHP 8)
InternalIterator::next Move forward to next element

 Description

 public InternalIterator::next(): void

 Moves the current position to the next element.

 Parameters

 This function has no parameters.

 Return Values

 No value is returned.

 Rewind the Iterator to the first element

 InternalIterator::rewind

 (PHP 8)
InternalIterator::rewind Rewind the Iterator to the first element

 Description

 public InternalIterator::rewind(): void

 Rewinds back to the first element of the Iterator.

 Parameters

 This function has no parameters.

 Return Values

 No value is returned.

 Check if current position is valid

 InternalIterator::valid

 (PHP 8)
InternalIterator::valid Check if current position is valid

 Description

 public InternalIterator::valid(): bool

 Checks if current position is valid.

 Parameters

 This function has no parameters.

 Return Values

 Returns whether the current position is valid.

 Throwable

 Throwable

 (PHP 7, PHP 8)

 Introduction

 Throwable is the base interface for any object that
 can be thrown via a throw statement, including
 Error and Exception.

 Note:

 PHP classes cannot implement the Throwable
 interface directly, and must instead extend
 Exception.

 Interface synopsis

 interface Throwable

 extends
 Stringable {

 /* Methods */

 public getMessage(): string

public getCode(): int

public getFile(): string

public getLine(): int

public getTrace(): array

public getTraceAsString(): string

public getPrevious(): ?Throwable

public __toString(): string

 /* Inherited methods */

 public Stringable::__toString(): string

 }

 Changelog

 	Version
 	Description

 	8.0.0
 	
 Throwable implements
 Stringable now.

Table of Contents
	Throwable::getMessage — Gets the message
	Throwable::getCode — Gets the exception code
	Throwable::getFile — Gets the file in which the object was created
	Throwable::getLine — Gets the line on which the object was instantiated
	Throwable::getTrace — Gets the stack trace
	Throwable::getTraceAsString — Gets the stack trace as a string
	Throwable::getPrevious — Returns the previous Throwable
	Throwable::__toString — Gets a string representation of the thrown object

 Gets the message

 Throwable::getMessage

 (PHP 7, PHP 8)
Throwable::getMessage Gets the message

 Description

 public Throwable::getMessage(): string

 Returns the message associated with the thrown object.

 Parameters

 This function has no parameters.

 Return Values

 Returns the message associated with the thrown object.

 See Also

 	Exception::getMessage() - Gets the Exception message

 Gets the exception code

 Throwable::getCode

 (PHP 7, PHP 8)
Throwable::getCode Gets the exception code

 Description

 public Throwable::getCode(): int

 Returns the error code associated with the thrown object.

 Parameters

 This function has no parameters.

 Return Values

 Returns the exception code as int in
 Exception but possibly as other type in
 Exception descendants (for example as
 string in PDOException).

 See Also

 	Exception::getCode() - Gets the Exception code

 Gets the file in which the object was created

 Throwable::getFile

 (PHP 7, PHP 8)
Throwable::getFile Gets the file in which the object was created

 Description

 public Throwable::getFile(): string

 Get the name of the file in which the thrown object was created.

 Parameters

 This function has no parameters.

 Return Values

 Returns the filename in which the thrown object was created.

 See Also

 	Exception::getFile() - Gets the file in which the exception was created

 Gets the line on which the object was instantiated

 Throwable::getLine

 (PHP 7, PHP 8)
Throwable::getLine Gets the line on which the object was instantiated

 Description

 public Throwable::getLine(): int

 Returns the line number where the thrown object was instantiated.

 Parameters

 This function has no parameters.

 Return Values

 Returns the line number where the thrown object was instantiated.

 See Also

 	Exception::getLine() - Gets the line in which the exception was created

 Gets the stack trace

 Throwable::getTrace

 (PHP 7, PHP 8)
Throwable::getTrace Gets the stack trace

 Description

 public Throwable::getTrace(): array

 Returns the stack trace as an array.

 Parameters

 This function has no parameters.

 Return Values

 Returns the stack trace as an array in the same format as
 debug_backtrace().

 See Also

 	Exception::getTrace() - Gets the stack trace

 Gets the stack trace as a string

 Throwable::getTraceAsString

 (PHP 7, PHP 8)
Throwable::getTraceAsString Gets the stack trace as a string

 Description

 public Throwable::getTraceAsString(): string

 Parameters

 This function has no parameters.

 Return Values

 Returns the stack trace as a string.

 See Also

 	Exception::getTraceAsString() - Gets the stack trace as a string

 Returns the previous Throwable

 Throwable::getPrevious

 (PHP 7, PHP 8)
Throwable::getPrevious Returns the previous Throwable

 Description

 public Throwable::getPrevious(): ?Throwable

 Returns any previous Throwable (for example, one provided as the third
 parameter to Exception::__construct()).

 Parameters

 This function has no parameters.

 Return Values

 Returns the previous Throwable if available, or
 null otherwise.

 See Also

 	Exception::getPrevious() - Returns previous Throwable

 Gets a string representation of the thrown object

 Throwable::__toString

 (PHP 7, PHP 8)
Throwable::__toString Gets a string representation of the thrown object

 Description

 public Throwable::__toString(): string

 Parameters

 This function has no parameters.

 Return Values

 Returns the string representation of the thrown object.

 See Also

 	Exception::__toString() - String representation of the exception

 The ArrayAccess interface

 The ArrayAccess interface

 (PHP 5, PHP 7, PHP 8)

 Introduction

 Interface to provide accessing objects as arrays.

 Interface synopsis

 interface ArrayAccess {

 /* Methods */

 public offsetExists(mixed $offset): bool

public offsetGet(mixed $offset): mixed

public offsetSet(mixed $offset, mixed $value): void

public offsetUnset(mixed $offset): void

 }

 Examples

 Example #1 Basic usage

<?php
class Obj implements ArrayAccess {
 public $container = [
 "one" => 1,
 "two" => 2,
 "three" => 3,
];

 public function offsetSet($offset, $value): void {
 if (is_null($offset)) {
 $this->container[] = $value;
 } else {
 $this->container[$offset] = $value;
 }
 }

 public function offsetExists($offset): bool {
 return isset($this->container[$offset]);
 }

 public function offsetUnset($offset): void {
 unset($this->container[$offset]);
 }

 public function offsetGet($offset): mixed {
 return isset($this->container[$offset]) ? $this->container[$offset] : null;
 }
}

$obj = new Obj;

var_dump(isset($obj["two"]));
var_dump($obj["two"]);
unset($obj["two"]);
var_dump(isset($obj["two"]));
$obj["two"] = "A value";
var_dump($obj["two"]);
$obj[] = 'Append 1';
$obj[] = 'Append 2';
$obj[] = 'Append 3';
print_r($obj);
?>

 The above example will output
something similar to:

bool(true)
int(2)
bool(false)
string(7) "A value"
obj Object
(
 [container:obj:private] => Array
 (
 [one] => 1
 [three] => 3
 [two] => A value
 [0] => Append 1
 [1] => Append 2
 [2] => Append 3
)

)

Table of Contents
	ArrayAccess::offsetExists — Whether an offset exists
	ArrayAccess::offsetGet — Offset to retrieve
	ArrayAccess::offsetSet — Assign a value to the specified offset
	ArrayAccess::offsetUnset — Unset an offset

 Whether an offset exists

 ArrayAccess::offsetExists

 (PHP 5, PHP 7, PHP 8)
ArrayAccess::offsetExists Whether an offset exists

 Description

 public ArrayAccess::offsetExists(mixed $offset): bool

 Whether or not an offset exists.

 This method is executed when using isset() or
 empty() on objects implementing ArrayAccess.

 Note:

 When using empty() ArrayAccess::offsetGet() will
 be called and checked if empty only if ArrayAccess::offsetExists()
 returns true.

 Parameters

 	offset

 	

 An offset to check for.

 Return Values

 Returns true on success or false on failure.

 Note:

 The return value will be casted to bool if non-boolean was returned.

 Examples

 Example #1 ArrayAccess::offsetExists() example

<?php
class obj implements ArrayAccess {
 public function offsetSet($offset, $value): void {
 var_dump(__METHOD__);
 }
 public function offsetExists($var): bool {
 var_dump(__METHOD__);
 if ($var == "foobar") {
 return true;
 }
 return false;
 }
 public function offsetUnset($var): void {
 var_dump(__METHOD__);
 }
 #[\ReturnTypeWillChange]
 public function offsetGet($var) {
 var_dump(__METHOD__);
 return "value";
 }
}

$obj = new obj;

echo "Runs obj::offsetExists()\n";
var_dump(isset($obj["foobar"]));

echo "\nRuns obj::offsetExists() and obj::offsetGet()\n";
var_dump(empty($obj["foobar"]));

echo "\nRuns obj::offsetExists(), *not* obj:offsetGet() as there is nothing to get\n";
var_dump(empty($obj["foobaz"]));
?>

 The above example will output
something similar to:

Runs obj::offsetExists()
string(17) "obj::offsetExists"
bool(true)

Runs obj::offsetExists() and obj::offsetGet()
string(17) "obj::offsetExists"
string(14) "obj::offsetGet"
bool(false)

Runs obj::offsetExists(), *not* obj:offsetGet() as there is nothing to get
string(17) "obj::offsetExists"
bool(true)

 Offset to retrieve

 ArrayAccess::offsetGet

 (PHP 5, PHP 7, PHP 8)
ArrayAccess::offsetGet Offset to retrieve

 Description

 public ArrayAccess::offsetGet(mixed $offset): mixed

 Returns the value at specified offset.

 This method is executed when checking if offset is empty().

 Parameters

 	offset

 	

 The offset to retrieve.

 Return Values

 Can return all value types.

 Notes

 Note:

 It's possible for implementations of this method to return by reference.
 This makes indirect modifications to the overloaded array dimensions of
 ArrayAccess objects possible.

 A direct modification is one that replaces completely the value of
 the array dimension, as in $obj[6] = 7. An
 indirect modification, on the other hand, only changes part of the
 dimension, or attempts to assign the dimension by reference to
 another variable, as in $obj[6][7] = 7 or
 $var =& $obj[6]. Increments with
 ++ and decrements with --
 are also implemented in a way that requires indirect modification.

 While direct modification triggers a call to
 ArrayAccess::offsetSet(), indirect modification
 triggers a call to ArrayAccess::offsetGet().
 In that case, the implementation of
 ArrayAccess::offsetGet() must be able to return by
 reference, otherwise an E_NOTICE message is raised.

 See Also

 	ArrayAccess::offsetExists() - Whether an offset exists

 Assign a value to the specified offset

 ArrayAccess::offsetSet

 (PHP 5, PHP 7, PHP 8)
ArrayAccess::offsetSet Assign a value to the specified offset

 Description

 public ArrayAccess::offsetSet(mixed $offset, mixed $value): void

 Assigns a value to the specified offset.

 Parameters

 	offset

 	

 The offset to assign the value to.

 	value

 	

 The value to set.

 Return Values

 No value is returned.

 Notes

 Note:

 The offset parameter will be set to null if
 another value is not available, like in the following example.

<?php
$arrayaccess[] = "first value";
$arrayaccess[] = "second value";
print_r($arrayaccess);
?>

 The above example will output:

Array
(
 [0] => first value
 [1] => second value
)

 Note:

 This function is not called in assignments by reference and otherwise
 indirect changes to array dimensions overloaded with
 ArrayAccess (indirect in the sense they are
 made not by changing the dimension directly, but by changing a
 sub-dimension or sub-property or assigning the array dimension by
 reference to another variable).
 Instead, ArrayAccess::offsetGet() is called. The
 operation will only be successful if that method returns by reference.

 Unset an offset

 ArrayAccess::offsetUnset

 (PHP 5, PHP 7, PHP 8)
ArrayAccess::offsetUnset Unset an offset

 Description

 public ArrayAccess::offsetUnset(mixed $offset): void

 Unsets an offset.

 Note:

 This method will not be called when type-casting to
 (unset)

 Parameters

 	offset

 	

 The offset to unset.

 Return Values

 No value is returned.

 The Serializable interface

 The Serializable interface

 (PHP 5 >= 5.1.0, PHP 7, PHP 8)

 Introduction

 Interface for customized serializing.

 Classes that implement this interface no longer support
 __sleep() and
 __wakeup(). The method serialize is
 called whenever an instance needs to be serialized. This does not invoke __destruct()
 or have any other side effect unless programmed inside the method. When the data is
 unserialized the class is known and the appropriate unserialize() method is called as
 a constructor instead of calling __construct(). If you need to execute the standard
 constructor you may do so in the method.

 Warning

 As of PHP 8.1.0, a class which implements Serializable without also implementing __serialize() and __unserialize() will generate a deprecation warning.

 Interface synopsis

 interface Serializable {

 /* Methods */

 public serialize(): ?string

public unserialize(string $data): void

 }

 Examples

 Example #1 Basic usage

<?php
class obj implements Serializable {
 private $data;
 public function __construct() {
 $this->data = "My private data";
 }
 public function serialize() {
 return serialize($this->data);
 }
 public function unserialize($data) {
 $this->data = unserialize($data);
 }
 public function getData() {
 return $this->data;
 }
}

$obj = new obj;
$ser = serialize($obj);

var_dump($ser);

$newobj = unserialize($ser);

var_dump($newobj->getData());
?>

 The above example will output
something similar to:

string(38) "C:3:"obj":23:{s:15:"My private data";}"
string(15) "My private data"

Table of Contents
	Serializable::serialize — String representation of object
	Serializable::unserialize — Constructs the object

 String representation of object

 Serializable::serialize

 (PHP 5 >= 5.1.0, PHP 7, PHP 8)
Serializable::serialize String representation of object

 Description

 public Serializable::serialize(): ?string

 Should return the string representation of the object.

 Parameters

 This function has no parameters.

 Return Values

 Returns the string representation of the object or null

 Errors/Exceptions

 Throws Exception when returning other types than strings and
 null.

 See Also

 	__sleep()

 	__serialize()

 Constructs the object

 Serializable::unserialize

 (PHP 5 >= 5.1.0, PHP 7, PHP 8)
Serializable::unserialize Constructs the object

 Description

 public Serializable::unserialize(string $data): void

 Called during unserialization of the object.

 Note:

 This method acts as the
 constructor of the object. The
 __construct() method will not be called after this
 method.

 Parameters

 	data

 	

 The string representation of the object.

 Return Values

 The return value from this method is ignored.

 See Also

 	__wakeup()

 	__unserialize()

 The Closure class

 The Closure class

 (PHP 5 >= 5.3.0, PHP 7, PHP 8)

 Introduction

 Class used to represent anonymous
 functions.

 Anonymous functions yield objects of this type.
 This class has methods that allow
 further control of the anonymous function after it has been created.

 Besides the methods listed here, this class also has an
 __invoke method. This is for consistency with other
 classes that implement calling
 magic, as this method is not used for calling the function.

 Class synopsis

 final
 class Closure
 {

 /* Methods */

 private __construct()

 public static bind(Closure $closure, ?object $newThis, object|string|null $newScope = "static"): ?Closure

public bindTo(?object $newThis, object|string|null $newScope = "static"): ?Closure

public call(object $newThis, mixed ...$args): mixed

public static fromCallable(callable $callback): Closure

 }

Table of Contents
	Closure::__construct — Constructor that disallows instantiation
	Closure::bind — Duplicates a closure with a specific bound object and class scope
	Closure::bindTo — Duplicates the closure with a new bound object and class scope
	Closure::call — Binds and calls the closure
	Closure::fromCallable — Converts a callable into a closure

 Constructor that disallows instantiation

 Closure::__construct

 (PHP 5 >= 5.3.0, PHP 7, PHP 8)
Closure::__construct Constructor that disallows instantiation

 Description

 private Closure::__construct()

 This method exists only to disallow instantiation of the
 Closure class. Objects of this class are created
 in the fashion described on the
 anonymous functions page.

 Parameters

 This function has no parameters.

 See Also

 	
 Anonymous functions

 Duplicates a closure with a specific bound object and class scope

 Closure::bind

 (PHP 5 >= 5.4.0, PHP 7, PHP 8)
Closure::bind
 Duplicates a closure with a specific bound object and class scope

 Description

 public static Closure::bind(Closure $closure, ?object $newThis, object|string|null $newScope = "static"): ?Closure

 This method is a static version of Closure::bindTo().
 See the documentation of that method for more information.

 Parameters

 	closure

 	

 The anonymous functions to bind.

 	newThis

 	

 The object to which the given anonymous function should be bound, or
 null for the closure to be unbound.

 	newScope

 	

 The class scope to which the closure is to be associated, or
 'static' to keep the current one. If an object is given, the type of the
 object will be used instead. This determines the visibility of protected
 and private methods of the bound object.
 It is not allowed to pass (an object of) an internal class as this parameter.

 Return Values

 Returns a new Closure object, or null on failure.

 Examples

 Example #1 Closure::bind() example

<?php
class A {
 private static $sfoo = 1;
 private $ifoo = 2;
}
$cl1 = static function() {
 return A::$sfoo;
};
$cl2 = function() {
 return $this->ifoo;
};

$bcl1 = Closure::bind($cl1, null, 'A');
$bcl2 = Closure::bind($cl2, new A(), 'A');
echo $bcl1(), "\n";
echo $bcl2(), "\n";
?>

 The above example will output
something similar to:

1
2

 See Also

 	Anonymous functions

 	Closure::bindTo() - Duplicates the closure with a new bound object and class scope

 Duplicates the closure with a new bound object and class scope

 Closure::bindTo

 (PHP 5 >= 5.4.0, PHP 7, PHP 8)
Closure::bindTo
 Duplicates the closure with a new bound object and class scope

 Description

 public Closure::bindTo(?object $newThis, object|string|null $newScope = "static"): ?Closure

 Create and return a new anonymous
 function with the same body and bound variables as this one, but
 possibly with a different bound object and a new class scope.

 The “bound object” determines the value $this will
 have in the function body and the “class scope” represents a class
 which determines which private and protected members the anonymous
 function will be able to access. Namely, the members that will be
 visible are the same as if the anonymous function were a method of
 the class given as value of the newScope
 parameter.

 Static closures cannot have any bound object (the value of the parameter
 newThis should be null), but this function can
 nevertheless be used to change their class scope.

 This function will ensure that for a non-static closure, having a bound
 instance will imply being scoped and vice-versa. To this end,
 non-static closures that are given a scope but a null instance are made
 static and non-static non-scoped closures that are given a non-null
 instance are scoped to an unspecified class.

 Note:

 If you only want to duplicate the anonymous functions, you can use
 cloning instead.

 Parameters

 	newThis

 	

 The object to which the given anonymous function should be bound, or
 null for the closure to be unbound.

 	newScope

 	

 The class scope to which the closure is to be associated, or
 'static' to keep the current one. If an object is given, the type of the
 object will be used instead. This determines the visibility of protected
 and private methods of the bound object.
 It is not allowed to pass (an object of) an internal class as this parameter.

 Return Values

 Returns the newly created Closure object
 or null on failure.

 Examples

 Example #1 Closure::bindTo() example

<?php

class A
{
 private $val;

 public function __construct($val)
 {
 $this->val = $val;
 }

 public function getClosure()
 {
 // Returns closure bound to this object and scope
 return function() {
 return $this->val;
 };
 }
}

$ob1 = new A(1);
$ob2 = new A(2);

$cl = $ob1->getClosure();
echo $cl(), "\n";

$cl = $cl->bindTo($ob2);
echo $cl(), "\n";

?>

 The above example will output
something similar to:

1
2

 See Also

 	Anonymous functions

 	Closure::bind() - Duplicates a closure with a specific bound object and class scope

 Binds and calls the closure

 Closure::call

 (PHP 7, PHP 8)
Closure::call Binds and calls the closure

 Description

 public Closure::call(object $newThis, mixed ...$args): mixed

 Temporarily binds the closure to newThis, and calls
 it with any given parameters.

 Parameters

 	newThis

 	

 The object to bind the closure to for the duration of the
 call.

 	args

 	

 Zero or more parameters, which will be given as parameters to the
 closure.

 Return Values

 Returns the return value of the closure.

 Examples

 Example #1 Closure::call() example

<?php
class Value {
 protected $value;

 public function __construct($value) {
 $this->value = $value;
 }

 public function getValue() {
 return $this->value;
 }
}

$three = new Value(3);
$four = new Value(4);

$closure = function ($delta) { var_dump($this->getValue() + $delta); };
$closure->call($three, 4);
$closure->call($four, 4);
?>

 The above example will output:

int(7)
int(8)

 Converts a callable into a closure

 Closure::fromCallable

 (PHP 7 >= 7.1.0)
Closure::fromCallable Converts a callable into a closure

 Description

 public static Closure::fromCallable(callable $callback): Closure

 Create and return a new anonymous
 function from given callback using the
 current scope. This method checks if the callback is
 callable in the current scope and throws a TypeError
 if it is not.

 Note:

 As of PHP 8.1.0, First class callable syntax has the same semantics as this method.

 Parameters

 	callback

 	

 The callable to convert.

 Return Values

 Returns the newly created Closure or throws a
 TypeError if the callback is
 not callable in the current scope.

 See Also

 	Anonymous functions

 	First class callable syntax

 The stdClass class

 The stdClass class

 (PHP 4, PHP 5, PHP 7, PHP 8)

 Introduction

 A generic empty class with dynamic properties.

 Objects of this class can be instantiated with
 new operator or created by
 typecasting to object.
 Several PHP functions also create instances of this class, e.g.
 json_decode(), mysqli_fetch_object()
 or PDOStatement::fetchObject().

 Despite not implementing
 __get()/__set()
 magic methods, this class allows dynamic properties and does not require the
 #[\AllowDynamicProperties] attribute.

 This is not a base class as PHP does not have a concept of a universal base
 class. However, it is possible to create a custom class that extends from
 stdClass and as a result inherits the functionality
 of dynamic properties.

 Class synopsis

 class stdClass
 {

 }

 This class has no methods or default properties.

 Examples

 Example #1 Created as a result of typecasting to object

<?php
$obj = (object) array('foo' => 'bar');
var_dump($obj);

 The above example will output:

object(stdClass)#1 (1) {
 ["foo"]=>
 string(3) "bar"
}

 Example #2 Created as a result of json_decode()

<?php
$json = '{"foo":"bar"}';
var_dump(json_decode($json));

 The above example will output:

object(stdClass)#1 (1) {
 ["foo"]=>
 string(3) "bar"
}

 Example #3 Declaring dynamic properties

<?php
$obj = new stdClass();
$obj->foo = 42;
$obj->{1} = 42;
var_dump($obj);

 The above example will output:

object(stdClass)#1 (2) {
 ["foo"]=>
 int(42)
 ["1"]=>
 int(42)
}

 The Generator class

 The Generator class

 (PHP 5 >= 5.5.0, PHP 7, PHP 8)

 Introduction

 Generator objects are returned from generators.

 Caution

 Generator objects cannot be instantiated via
 new.

 Class synopsis

 final
 class Generator

 implements
 Iterator {

 /* Methods */

 public current(): mixed

public getReturn(): mixed

public key(): mixed

public next(): void

public rewind(): void

public send(mixed $value): mixed

public throw(Throwable $exception): mixed

public valid(): bool

public __wakeup(): void

 }

 See Also

 See also object iteration.

Table of Contents
	Generator::current — Get the yielded value
	Generator::getReturn — Get the return value of a generator
	Generator::key — Get the yielded key
	Generator::next — Resume execution of the generator
	Generator::rewind — Rewind the iterator
	Generator::send — Send a value to the generator
	Generator::throw — Throw an exception into the generator
	Generator::valid — Check if the iterator has been closed
	Generator::__wakeup — Serialize callback

 Get the yielded value

 Generator::current

 (PHP 5 >= 5.5.0, PHP 7, PHP 8)
Generator::current Get the yielded value

 Description

 public Generator::current(): mixed

 Parameters

 This function has no parameters.

 Return Values

 Returns the yielded value.

 Get the return value of a generator

 Generator::getReturn

 (PHP 7, PHP 8)
Generator::getReturn Get the return value of a generator

 Description

 public Generator::getReturn(): mixed

 Parameters

 This function has no parameters.

 Return Values

 Returns the generator's return value once it has finished executing.

 Examples

 Example #1 Generator::getReturn() example

<?php

$gen = (function() {
 yield 1;
 yield 2;

 return 3;
})();

foreach ($gen as $val) {
 echo $val, PHP_EOL;
}

echo $gen->getReturn(), PHP_EOL;

 The above example will output:

1
2
3

 Get the yielded key

 Generator::key

 (PHP 5 >= 5.5.0, PHP 7, PHP 8)
Generator::key Get the yielded key

 Description

 public Generator::key(): mixed

 Gets the key of the yielded value.

 Parameters

 This function has no parameters.

 Return Values

 Returns the yielded key.

 Examples

 Example #1 Generator::key() example

<?php

function Gen()
{
 yield 'key' => 'value';
}

$gen = Gen();

echo "{$gen->key()} => {$gen->current()}";

 The above example will output:

key => value

 Resume execution of the generator

 Generator::next

 (PHP 5 >= 5.5.0, PHP 7, PHP 8)
Generator::next Resume execution of the generator

 Description

 public Generator::next(): void

 Calling Generator::next() has the same effect as calling
 Generator::send() with null as argument.

 Parameters

 This function has no parameters.

 Return Values

 No value is returned.

 Rewind the iterator

 Generator::rewind

 (PHP 5 >= 5.5.0, PHP 7, PHP 8)
Generator::rewind Rewind the iterator

 Description

 public Generator::rewind(): void

 If iteration has already begun, this will throw an exception.

 Parameters

 This function has no parameters.

 Return Values

 No value is returned.

 Send a value to the generator

 Generator::send

 (PHP 5 >= 5.5.0, PHP 7, PHP 8)
Generator::send Send a value to the generator

 Description

 public Generator::send(mixed $value): mixed

 Sends the given value to the generator as the result of the current yield
 expression and resumes execution of the generator.

 If the generator is not at a yield expression when this method is called, it
 will first be let to advance to the first yield expression before sending the
 value. As such it is not necessary to "prime" PHP generators with a
 Generator::next() call (like it is done in Python).

 Parameters

 	value

 	

 Value to send into the generator. This value will be the return value of the
 yield expression the generator is currently at.

 Return Values

 Returns the yielded value.

 Examples

 Example #1 Using Generator::send() to inject values

<?php
function printer() {
 echo "I'm printer!".PHP_EOL;
 while (true) {
 $string = yield;
 echo $string.PHP_EOL;
 }
}

$printer = printer();
$printer->send('Hello world!');
$printer->send('Bye world!');
?>

 The above example will output:

I'm printer!
Hello world!
Bye world!

 Throw an exception into the generator

 Generator::throw

 (PHP 5 >= 5.5.0, PHP 7, PHP 8)
Generator::throw Throw an exception into the generator

 Description

 public Generator::throw(Throwable $exception): mixed

 Throws an exception into the generator and resumes execution of the generator.
 The behavior will be the same as if the current yield expression was replaced with
 a throw $exception statement.

 If the generator is already closed when this method is invoked, the exception will
 be thrown in the caller's context instead.

 Parameters

 	exception

 	

 Exception to throw into the generator.

 Return Values

 Returns the yielded value.

 Examples

 Example #1 Throwing an exception into a generator

<?php
function gen() {
 echo "Foo\n";
 try {
 yield;
 } catch (Exception $e) {
 echo "Exception: {$e->getMessage()}\n";
 }
 echo "Bar\n";
}

$gen = gen();
$gen->rewind();
$gen->throw(new Exception('Test'));
?>

 The above example will output:

Foo
Exception: Test
Bar

 Check if the iterator has been closed

 Generator::valid

 (PHP 5 >= 5.5.0, PHP 7, PHP 8)
Generator::valid Check if the iterator has been closed

 Description

 public Generator::valid(): bool

 Parameters

 This function has no parameters.

 Return Values

 Returns false if the iterator has been closed. Otherwise returns true.

 Serialize callback

 Generator::__wakeup

 (PHP 5 >= 5.5.0, PHP 7, PHP 8)
Generator::__wakeup Serialize callback

 Description

 public Generator::__wakeup(): void

 Throws an exception as generators can't be serialized.

 Parameters

 This function has no parameters.

 Return Values

 No value is returned.

 The Fiber class

 The Fiber class

 (PHP 8 >= 8.1.0)

 Introduction

 Fibers represent full-stack, interruptible functions. Fibers may be suspended from anywhere in the call-stack,
 pausing execution within the fiber until the fiber is resumed at a later time.

 Class synopsis

 final
 class Fiber
 {

 /* Methods */

 public __construct(callable $callback)

 public start(mixed ...$args): mixed

public resume(mixed $value = null): mixed

public throw(Throwable $exception): mixed

public getReturn(): mixed

public isStarted(): bool

public isSuspended(): bool

public isRunning(): bool

public isTerminated(): bool

public static suspend(mixed $value = null): mixed

public static getCurrent(): ?Fiber

 }

 See Also

 Fibers overview

Table of Contents
	Fiber::__construct — Creates a new Fiber instance
	Fiber::start — Start execution of the fiber
	Fiber::resume — Resumes execution of the fiber with a value
	Fiber::throw — Resumes execution of the fiber with an exception
	Fiber::getReturn — Gets the value returned by the Fiber
	Fiber::isStarted — Determines if the fiber has started
	Fiber::isSuspended — Determines if the fiber is suspended
	Fiber::isRunning — Determines if the fiber is running
	Fiber::isTerminated — Determines if the fiber has terminated
	Fiber::suspend — Suspends execution of the current fiber
	Fiber::getCurrent — Gets the currently executing Fiber instance

 Creates a new Fiber instance

 Fiber::__construct

 (PHP 8 >= 8.1.0)
Fiber::__construct Creates a new Fiber instance

 Description

 public Fiber::__construct(callable $callback)

 Parameters

 	callback

 	

 The callable to invoke when starting the fiber.
 Arguments given to Fiber::start() will be
 provided as arguments to the given callable.

 Start execution of the fiber

 Fiber::start

 (PHP 8 >= 8.1.0)
Fiber::start Start execution of the fiber

 Description

 public Fiber::start(mixed ...$args): mixed

 A variadic list of arguments to provide to the callable used when constructing the fiber.

 If the fiber has already been started when this method is called, a FiberError will be thrown.

 Parameters

 	args

 	

 The arguments to use when invoking the callable given to the fiber constructor.

 Return Values

 The value provided to the first call to Fiber::suspend() or null if the fiber returns.
 If the fiber throws an exception before suspending, it will be thrown from the call to this method.

 Resumes execution of the fiber with a value

 Fiber::resume

 (PHP 8 >= 8.1.0)
Fiber::resume Resumes execution of the fiber with a value

 Description

 public Fiber::resume(mixed $value = null): mixed

 Resumes the fiber using the given value as the result of the current Fiber::suspend() call.

 If the fiber is not suspended when this method is called, a FiberError will be thrown.

 Parameters

 	value

 	

 The value to resume the fiber. This value will be the return value of the current
 Fiber::suspend() call.

 Return Values

 The value provided to the next call to Fiber::suspend() or null if the fiber returns.
 If the fiber throws an exception before suspending, it will be thrown from the call to this method.

 Resumes execution of the fiber with an exception

 Fiber::throw

 (PHP 8 >= 8.1.0)
Fiber::throw Resumes execution of the fiber with an exception

 Description

 public Fiber::throw(Throwable $exception): mixed

 Resumes the fiber by throwing the given exception from the current Fiber::suspend() call.

 If the fiber is not suspended when this method is called, a FiberError will be thrown.

 Parameters

 	exception

 	

 The exception to throw into the fiber from the current Fiber::suspend() call.

 Return Values

 The value provided to the next call to Fiber::suspend() or null if the fiber returns.
 If the fiber throws an exception before suspending, it will be thrown from the call to this method.

 Gets the value returned by the Fiber

 Fiber::getReturn

 (PHP 8 >= 8.1.0)
Fiber::getReturn Gets the value returned by the Fiber

 Description

 public Fiber::getReturn(): mixed

 Parameters

 This function has no parameters.

 Return Values

 Returns the value returned by the callable provided to Fiber::__construct().
 If the fiber has not returned a value, either because it has not been started, has not terminated, or threw an
 exception, a FiberError will be thrown.

 Determines if the fiber has started

 Fiber::isStarted

 (PHP 8 >= 8.1.0)
Fiber::isStarted Determines if the fiber has started

 Description

 public Fiber::isStarted(): bool

 Parameters

 This function has no parameters.

 Return Values

 Returns true only after the fiber has been started; otherwise false is returned.

 Determines if the fiber is suspended

 Fiber::isSuspended

 (PHP 8 >= 8.1.0)
Fiber::isSuspended Determines if the fiber is suspended

 Description

 public Fiber::isSuspended(): bool

 Parameters

 This function has no parameters.

 Return Values

 Returns true if the fiber is currently suspended; otherwise false is returned.

 Determines if the fiber is running

 Fiber::isRunning

 (PHP 8 >= 8.1.0)
Fiber::isRunning Determines if the fiber is running

 Description

 public Fiber::isRunning(): bool

 Parameters

 This function has no parameters.

 Return Values

 Returns true only if the fiber is running. A fiber is considered running after a call to
 Fiber::start(), Fiber::resume(), or
 Fiber::throw() that has not yet returned.
 Return false if the fiber is not running.

 Determines if the fiber has terminated

 Fiber::isTerminated

 (PHP 8 >= 8.1.0)
Fiber::isTerminated Determines if the fiber has terminated

 Description

 public Fiber::isTerminated(): bool

 Parameters

 This function has no parameters.

 Return Values

 Returns true only after the fiber has terminated, either by returning or throwing an exception;
 otherwise false is returned.

 Suspends execution of the current fiber

 Fiber::suspend

 (PHP 8 >= 8.1.0)
Fiber::suspend Suspends execution of the current fiber

 Description

 public static Fiber::suspend(mixed $value = null): mixed

 Suspends execution of the current fiber. The value provided to this method will be returned from the call to
 Fiber::start(), Fiber::resume(), or
 Fiber::throw() that switched execution into the current fiber.

 When the fiber is resumed, this method returns the value provided to Fiber::resume().
 If the fiber is resumed using Fiber::throw(), the exception given to that method will be
 thrown from the call to this method.

 If this method is called from outside a fiber, a FiberError will be thrown.

 Parameters

 	value

 	

 The value to return from the call to Fiber::start(),
 Fiber::resume(), or Fiber::throw() that switched execution into
 the current fiber.

 Return Values

 The value provided to Fiber::resume().

 Gets the currently executing Fiber instance

 Fiber::getCurrent

 (PHP 8 >= 8.1.0)
Fiber::getCurrent Gets the currently executing Fiber instance

 Description

 public static Fiber::getCurrent(): ?Fiber

 Parameters

 This function has no parameters.

 Return Values

 Returns the currently executing Fiber instance or null if this method is called from
 outside a fiber.

 The WeakReference class

 The WeakReference class

 (PHP 7 >= 7.4.0, PHP 8)

 Introduction

 Weak references allow the programmer to retain a reference to an object which does not prevent
 the object from being destroyed. They are useful for implementing cache like structures.

 WeakReferences cannot be serialized.

 Class synopsis

 final
 class WeakReference
 {

 /* Methods */

 public __construct()

 public static create(object $object): WeakReference

public get(): ?object

 }

 WeakReference Examples

 Example #1 Basic WeakReference Usage

<?php
$obj = new stdClass;
$weakref = WeakReference::create($obj);
var_dump($weakref->get());
unset($obj);
var_dump($weakref->get());
?>

 The above example will output
something similar to:

object(stdClass)#1 (0) {
}
NULL

Table of Contents
	WeakReference::__construct — Constructor that disallows instantiation
	WeakReference::create — Create a new weak reference
	WeakReference::get — Get a weakly referenced Object

 Constructor that disallows instantiation

 WeakReference::__construct

 (PHP 7 >= 7.4.0, PHP 8)
WeakReference::__construct Constructor that disallows instantiation

 Description

 public WeakReference::__construct()

 This method exists only to disallow instantiation of the WeakReference class.
 Weak references are to be instantiated with the factory method WeakReference::create().

 Parameters

 This function has no parameters.

 See Also

 	WeakReference::create() - Create a new weak reference

 Create a new weak reference

 WeakReference::create

 (PHP 7 >= 7.4.0, PHP 8)
WeakReference::create Create a new weak reference

 Description

 public static WeakReference::create(object $object): WeakReference

 Creates a new WeakReference.

 Parameters

 	object

 	

 The object to be weakly referenced.

 Return Values

 Returns a new WeakReference, or the existing instance if there was already a WeakReference to the same object.

 Get a weakly referenced Object

 WeakReference::get

 (PHP 7 >= 7.4.0, PHP 8)
WeakReference::get Get a weakly referenced Object

 Description

 public WeakReference::get(): ?object

 Gets a weakly referenced object.
 If the object has already been destroyed, null is returned.

 Parameters

 This function has no parameters.

 Return Values

 Returns the referenced object, or null if the object has been destroyed.

 The WeakMap class

 The WeakMap class

 (PHP 8)

 Introduction

 A WeakMap is map (or dictionary) that accepts objects as keys. However, unlike the
 otherwise similar SplObjectStorage, an object in a key of WeakMap
 does not contribute toward the object's reference count. That is, if at any point the only remaining reference
 to an object is the key of a WeakMap, the object will be garbage collected and removed
 from the WeakMap. Its primary use case is for building caches of data derived from
 an object that do not need to live longer than the object.

 WeakMap implements ArrayAccess,
 Traversable (via IteratorAggregate),
 and Countable, so in most cases it can be used in the same fashion as an associative array.

 Class synopsis

 final
 class WeakMap

 implements
 ArrayAccess,

 Countable,

 IteratorAggregate {

 /* Methods */

 public count(): int

public getIterator(): Iterator

public offsetExists(object $object): bool

public offsetGet(object $object): mixed

public offsetSet(object $object, mixed $value): void

public offsetUnset(object $object): void

 }

 Examples

 Example #1 Weakmap usage example

 <?php
$wm = new WeakMap();

$o = new stdClass;

class A {
 public function __destruct() {
 echo "Dead!\n";
 }
}

$wm[$o] = new A;

var_dump(count($wm));
echo "Unsetting...\n";
unset($o);
echo "Done\n";
var_dump(count($wm));

 The above example will output:

int(1)
Unsetting...
Dead!
Done
int(0)

Table of Contents
	WeakMap::count — Counts the number of live entries in the map
	WeakMap::getIterator — Retrieve an external iterator
	WeakMap::offsetExists — Checks whether a certain object is in the map
	WeakMap::offsetGet — Returns the value pointed to by a certain object
	WeakMap::offsetSet — Updates the map with a new key-value pair
	WeakMap::offsetUnset — Removes an entry from the map

 Counts the number of live entries in the map

 WeakMap::count

 (PHP 8)
WeakMap::count Counts the number of live entries in the map

 Description

 public WeakMap::count(): int

 Counts the number of live entries in the map.

 Parameters

 This function has no parameters.

 Return Values

 Returns the number of live entries in the map.

 Retrieve an external iterator

 WeakMap::getIterator

 (PHP 8)
WeakMap::getIterator Retrieve an external iterator

 Description

 public WeakMap::getIterator(): Iterator

 Returns an external iterator.

 Parameters

 This function has no parameters.

 Return Values

 An instance of an object implementing Iterator or
 Traversable

 Errors/Exceptions

 Throws an Exception on failure.

 Checks whether a certain object is in the map

 WeakMap::offsetExists

 (PHP 8)
WeakMap::offsetExists Checks whether a certain object is in the map

 Description

 public WeakMap::offsetExists(object $object): bool

 Checks whether the passed object is referenced in the map.

 Parameters

 	object

 	

 Object to check for.

 Return Values

 Returns true if the object is contained in the map, false otherwise.

 Returns the value pointed to by a certain object

 WeakMap::offsetGet

 (PHP 8)
WeakMap::offsetGet Returns the value pointed to by a certain object

 Description

 public WeakMap::offsetGet(object $object): mixed

 Returns the value pointed to by a certain object.

 Parameters

 	object

 	

 Some object contained as key in the map.

 Return Values

 Returns the value associated to the object passed as argument, null
 otherwise.

 Updates the map with a new key-value pair

 WeakMap::offsetSet

 (PHP 8)
WeakMap::offsetSet Updates the map with a new key-value pair

 Description

 public WeakMap::offsetSet(object $object, mixed $value): void

 Updates the map with a new key-value pair. If the key already existed in
 the map, the old value is replaced with the new.

 Parameters

 	object

 	

 The object serving as key of the key-value pair.

 	value

 	

 The arbitrary data serving as value of the key-value pair.

 Return Values

 No value is returned.

 Removes an entry from the map

 WeakMap::offsetUnset

 (PHP 8)
WeakMap::offsetUnset Removes an entry from the map

 Description

 public WeakMap::offsetUnset(object $object): void

 Removes an entry from the map.

 Parameters

 	object

 	

 The key object to remove from the map.

 Return Values

 No value is returned.

 The Stringable interface

 The Stringable interface

 (PHP 8)

 Introduction

 The Stringable interface denotes a class as
 having a __toString() method. Unlike most interfaces,
 Stringable is implicitly present on any class that
 has the magic __toString() method defined, although it
 can and should be declared explicitly.

 Its primary value is to allow functions to type check against the union
 type string|Stringable to accept either a string primitive
 or an object that can be cast to a string.

 Interface synopsis

 interface Stringable {

 /* Methods */

 public __toString(): string

 }

 Stringable Examples

 Example #1 Basic Stringable Usage

<?php
class IPv4Address implements Stringable {
 private string $oct1;
 private string $oct2;
 private string $oct3;
 private string $oct4;

 public function __construct(string $oct1, string $oct2, string $oct3, string $oct4) {
 $this->oct1 = $oct1;
 $this->oct2 = $oct2;
 $this->oct3 = $oct3;
 $this->oct4 = $oct4;
 }

 public function __toString(): string {
 return "$this->oct1.$this->oct2.$this->oct3.$this->oct4";
 }
}

function showStuff(string|Stringable $value) {
 // A Stringable will get converted to a string here by calling
 // __toString.
 print $value;
}

$ip = new IPv4Address('123', '234', '42', '9');

showStuff($ip);
?>

 The above example will output
something similar to:

123.234.42.9

Table of Contents
	Stringable::__toString — Gets a string representation of the object

 Gets a string representation of the object

 Stringable::__toString

 (PHP 8)
Stringable::__toString Gets a string representation of the object

 Description

 public Stringable::__toString(): string

 Parameters

 This function has no parameters.

 Return Values

 Returns the string representation of the object.

 See Also

 	__toString()

 The UnitEnum interface

 The UnitEnum interface

 (PHP 8 >= 8.1.0)

 Introduction

 The UnitEnum interface is automatically applied to all
 enumerations by the engine. It may not be implemented by user-defined classes.
 Enumerations may not override its methods, as default implementations are provided
 by the engine. It is available only for type checks.

 Interface synopsis

 interface UnitEnum {

 /* Methods */

 public static cases(): array

 }

Table of Contents
	UnitEnum::cases — Generates a list of cases on an enum

 Generates a list of cases on an enum

 UnitEnum::cases

 (PHP 8 >= 8.1.0)
UnitEnum::cases Generates a list of cases on an enum

 Description

 public static UnitEnum::cases(): array

 This method will return a packed array of all cases in an enumeration, in order of declaration.

 Parameters

 This function has no parameters.

 Return Values

 An array of all defined cases of this enumeration, in order of declaration.

 Examples

 Example #1 Basic usage

 The following example illustrates how enum cases are returned.

<?php
enum Suit
{
 case Hearts;
 case Diamonds;
 case Clubs;
 case Spades;
}

var_dump(Suit::cases());
?>

 The above example will output:

array(4) {
 [0]=>
 enum(Suit::Hearts)
 [1]=>
 enum(Suit::Diamonds)
 [2]=>
 enum(Suit::Clubs)
 [3]=>
 enum(Suit::Spades)
}

 The BackedEnum interface

 The BackedEnum interface

 (PHP 8 >= 8.1.0)

 Introduction

 The BackedEnum interface is automatically applied to backed
 enumerations by the engine. It may not be implemented by user-defined classes.
 Enumerations may not override its methods, as default implementations are provided
 by the engine. It is available only for type checks.

 Interface synopsis

 interface BackedEnum

 extends
 UnitEnum {

 /* Methods */

 public static from(int|string $value): static

public static tryFrom(int|string $value): ?static

 /* Inherited methods */

 public static UnitEnum::cases(): array

 }

Table of Contents
	BackedEnum::from — Maps a scalar to an enum instance
	BackedEnum::tryFrom — Maps a scalar to an enum instance or null

 Maps a scalar to an enum instance

 BackedEnum::from

 (PHP 8 >= 8.1.0)
BackedEnum::from Maps a scalar to an enum instance

 Description

 public static BackedEnum::from(int|string $value): static

 The from() method translates a string or int
 into the corresponding Enum case, if any. If there is no matching case defined, it will throw
 a ValueError.

 Parameters

 	value

 	

 The scalar value to map to an enum case.

 Return Values

 A case instance of this enumeration.

 Examples

 Example #1 Basic usage

 The following example illustrates how enum cases are returned.

<?php
enum Suit: string
{
 case Hearts = 'H';
 case Diamonds = 'D';
 case Clubs = 'C';
 case Spades = 'S';
}

$h = Suit::from('H');

var_dump($h);

$b = Suit::from('B');
?>

 The above example will output:

enum(Suit::Hearts)

Fatal error: Uncaught ValueError: "B" is not a valid backing value for enum "Suit" in /file.php:15

 See Also

 	UnitEnum::cases() - Generates a list of cases on an enum

 	BackedEnum::tryFrom() - Maps a scalar to an enum instance or null

 Maps a scalar to an enum instance or null

 BackedEnum::tryFrom

 (PHP 8 >= 8.1.0)
BackedEnum::tryFrom Maps a scalar to an enum instance or null

 Description

 public static BackedEnum::tryFrom(int|string $value): ?static

 The tryFrom() method translates a string or int
 into the corresponding Enum case, if any. If there is no matching case defined, it will
 return null.

 Parameters

 	value

 	

 The scalar value to map to an enum case.

 Return Values

 A case instance of this enumeration, or null if not found.

 Examples

 Example #1 Basic usage

 The following example illustrates how enum cases are returned.

<?php
enum Suit: string
{
 case Hearts = 'H';
 case Diamonds = 'D';
 case Clubs = 'C';
 case Spades = 'S';
}

$h = Suit::tryFrom('H');

var_dump($h);

$b = Suit::tryFrom('B') ?? Suit::Spades;

var_dump($b);
?>

 The above example will output:

enum(Suit::Hearts)
enum(Suit::Spades)

 See Also

 	UnitEnum::cases() - Generates a list of cases on an enum

 	BackedEnum::from() - Maps a scalar to an enum instance

 The SensitiveParameterValue class

 The SensitiveParameterValue class

 (PHP 8 >= 8.2.0)

 Introduction

 The SensitiveParameterValue class allows wrapping sensitive
 values to protect them against accidental exposure.

 Values of parameters having the SensitiveParameter attribute
 will automatically be wrapped inside of a SensitiveParameterValue
 object within stack traces.

 Class synopsis

 final
 class SensitiveParameterValue
 {

 /* Properties */

 private
 readonly
 mixed
 $value;

 /* Methods */

 public __construct(mixed $value)

 public __debugInfo(): array

public getValue(): mixed

 }

 Properties

 	value

 	

 The sensitive value to be protected against accidental exposure.

Table of Contents
	SensitiveParameterValue::__construct — Constructs a new SensitiveParameterValue object
	SensitiveParameterValue::__debugInfo — Protects the sensitive value against accidental exposure
	SensitiveParameterValue::getValue — Returns the sensitive value

 Constructs a new SensitiveParameterValue object

 SensitiveParameterValue::__construct

 (PHP 8 >= 8.2.0)
SensitiveParameterValue::__construct Constructs a new SensitiveParameterValue object

 Description

 public SensitiveParameterValue::__construct(mixed $value)

 WarningThis function is
currently not documented; only its argument list is available.

 Parameters

 	value

 	

 An arbitrary value that should be stored inside the SensitiveParameterValue object.

 Protects the sensitive value against accidental exposure

 SensitiveParameterValue::__debugInfo

 (PHP 8 >= 8.2.0)
SensitiveParameterValue::__debugInfo Protects the sensitive value against accidental exposure

 Description

 public SensitiveParameterValue::__debugInfo(): array

 Returns an empty array to protect the sensitive value against accidental exposure when using var_dump().

 Parameters

 This function has no parameters.

 Return Values

 An empty array.

 Examples

 Example #1 Passing a SensitiveParameterValue object to var_dump()

<?php
$s = new \SensitiveParameterValue('secret');

var_dump($s);
?>

 The above example will output:

object(SensitiveParameterValue)#1 (0) {
}

 Returns the sensitive value

 SensitiveParameterValue::getValue

 (PHP 8 >= 8.2.0)
SensitiveParameterValue::getValue Returns the sensitive value

 Description

 public SensitiveParameterValue::getValue(): mixed

 WarningThis function is
currently not documented; only its argument list is available.

 Parameters

 This function has no parameters.

 Return Values

 The sensitive value.

 Examples

 Example #1 SensitiveParameterValue::getValue() example

<?php
$s = new \SensitiveParameterValue('secret');

echo "The protected value is: ", $s->getValue(), "\n";
?>

 The above example will output:

The protected value is: secret

 Predefined Attributes

 Predefined Attributes

Table of Contents
	Attribute
	AllowDynamicProperties
	Override
	ReturnTypeWillChange
	SensitiveParameter

 PHP provides some predefined attributes that can be used.

 The Attribute class

 The Attribute class

 (PHP 8)

 Introduction

 Attributes offer the ability to add structured, machine-readable metadata
 information on declarations in code: Classes, methods, functions,
 parameters, properties and class constants can be the target of an attribute.
 The metadata defined by attributes can then be inspected at runtime using the
 Reflection APIs.
 Attributes could therefore be thought of as a configuration language
 embedded directly into code.

 Class synopsis

 final
 class Attribute
 {

 /* Constants */

 const
 int
 TARGET_CLASS;

 const
 int
 TARGET_FUNCTION;

 const
 int
 TARGET_METHOD;

 const
 int
 TARGET_PROPERTY;

 const
 int
 TARGET_CLASS_CONSTANT;

 const
 int
 TARGET_PARAMETER;

 const
 int
 TARGET_ALL;

 const
 int
 IS_REPEATABLE;

 /* Properties */

 public
 int
 $flags;

 /* Methods */

 public __construct(int $flags = Attribute::TARGET_ALL)

 }

 Predefined Constants

 	Attribute::TARGET_CLASS

 	

 	Attribute::TARGET_FUNCTION

 	

 	Attribute::TARGET_METHOD

 	

 	Attribute::TARGET_PROPERTY

 	

 	Attribute::TARGET_CLASS_CONSTANT

 	

 	Attribute::TARGET_PARAMETER

 	

 	Attribute::TARGET_ALL

 	

 	Attribute::IS_REPEATABLE

 	

 Properties

 	flags

 	

 See Also

 Attributes overview

Table of Contents
	Attribute::__construct — Construct a new Attribute instance

 Construct a new Attribute instance

 Attribute::__construct

 (PHP 8)
Attribute::__construct Construct a new Attribute instance

 Description

 public Attribute::__construct(int $flags = Attribute::TARGET_ALL)

 Constructs a new Attribute instance.

 Parameters

 	flags

 	

 The AllowDynamicProperties class

 The AllowDynamicProperties class

 (PHP 8 >= 8.2.0)

 Introduction

 This attribute is used to mark classes that allow
 dynamic properties.

 Class synopsis

 final
 class AllowDynamicProperties
 {

 /* Methods */

 public __construct()

 }

 Examples

 Dynamic properties are deprecated as of PHP 8.2.0,
 thus using them without marking the class with this attribute will emit
 a deprecation notice.

<?php
class DefaultBehaviour { }

#[\AllowDynamicProperties]
class ClassAllowsDynamicProperties { }

$o1 = new DefaultBehaviour();
$o2 = new ClassAllowsDynamicProperties();

$o1->nonExistingProp = true;
$o2->nonExistingProp = true;
?>

 Output of the above example in PHP 8.2:

Deprecated: Creation of dynamic property DefaultBehaviour::$nonExistingProp is deprecated in file on line 10

 See Also

 Attributes overview

Table of Contents
	AllowDynamicProperties::__construct — Construct a new AllowDynamicProperties attribute instance

 Construct a new AllowDynamicProperties attribute instance

 AllowDynamicProperties::__construct

 (PHP 8 >= 8.2.0)
AllowDynamicProperties::__construct Construct a new AllowDynamicProperties attribute instance

 Description

 public AllowDynamicProperties::__construct()

 Constructs a new AllowDynamicProperties instance.

 Parameters

 This function has no parameters.

 The Override class

 The Override class

 (PHP 8 >= 8.3.0)

 Introduction

 Class synopsis

 final
 class Override
 {

 /* Methods */

 public __construct()

 }

 Examples

<?php

class Base {
 protected function foo(): void {}
}

final class Extended extends Base {
 #[\Override]
 protected function boo(): void {}
}

?>

 Output of the above example in PHP 8.3 is similar to:

Fatal error: Extended::boo() has #[\Override] attribute, but no matching parent method exists

 See Also

 	Attributes overview

Table of Contents
	Override::__construct — Construct a new Override attribute instance

 Construct a new Override attribute instance

 Override::__construct

 (PHP 8 >= 8.3.0)
Override::__construct Construct a new Override attribute instance

 Description

 public Override::__construct()

 Constructs a new Override instance.

 Parameters

 This function has no parameters.

 The ReturnTypeWillChange class

 The ReturnTypeWillChange class

 (PHP 8 >= 8.1.0)

 Introduction

 Most non-final internal methods now require overriding methods to declare
 a compatible return type, otherwise a deprecated notice is emitted during
 inheritance validation.
 In case the return type cannot be declared for an overriding method due to
 PHP cross-version compatibility concerns,
 a #[\ReturnTypeWillChange] attribute can be added to silence
 the deprecation notice.

 Class synopsis

 final
 class ReturnTypeWillChange
 {

 /* Methods */

 public __construct()

 }

 See Also

 Attributes overview

Table of Contents
	ReturnTypeWillChange::__construct — Construct a new ReturnTypeWillChange attribute instance

 Construct a new ReturnTypeWillChange attribute instance

 ReturnTypeWillChange::__construct

 (PHP 8 >= 8.1.0)
ReturnTypeWillChange::__construct Construct a new ReturnTypeWillChange attribute instance

 Description

 public ReturnTypeWillChange::__construct()

 Constructs a new ReturnTypeWillChange instance.

 Parameters

 This function has no parameters.

 The SensitiveParameter class

 The SensitiveParameter class

 (PHP 8 >= 8.2.0)

 Introduction

 This attribute is used to mark a parameter that is sensitive and should
 have its value redacted if present in a stack trace.

 Class synopsis

 final
 class SensitiveParameter
 {

 /* Methods */

 public __construct()

 }

 Examples

<?php

function defaultBehavior(
 string $secret,
 string $normal
) {
 throw new Exception('Error!');
}

function sensitiveParametersWithAttribute(
 #[\SensitiveParameter]
 string $secret,
 string $normal
) {
 throw new Exception('Error!');
}

try {
 defaultBehavior('password', 'normal');
} catch (Exception $e) {
 echo $e, PHP_EOL, PHP_EOL;
}

try {
 sensitiveParametersWithAttribute('password', 'normal');
} catch (Exception $e) {
 echo $e, PHP_EOL, PHP_EOL;
}

?>

 Output of the above example in PHP 8.2 is similar to:

Exception: Error! in example.php:7
Stack trace:
#0 example.php(19): defaultBehavior('password', 'normal')
#1 {main}

Exception: Error! in example.php:15
Stack trace:
#0 example.php(25): sensitiveParametersWithAttribute(Object(SensitiveParameterValue), 'normal')
#1 {main}

 See Also

 	Attributes overview

 	SensitiveParameterValue

Table of Contents
	SensitiveParameter::__construct — Construct a new SensitiveParameter attribute instance

 Construct a new SensitiveParameter attribute instance

 SensitiveParameter::__construct

 (PHP 8 >= 8.2.0)
SensitiveParameter::__construct Construct a new SensitiveParameter attribute instance

 Description

 public SensitiveParameter::__construct()

 Constructs a new SensitiveParameter instance.

 Parameters

 This function has no parameters.

 Context options and parameters

 Context options and parameters

 PHP offers various context options and parameters which can be used with all
 filesystem and stream wrappers. The context is created with
 stream_context_create(). Options are set with
 stream_context_set_option() and parameters with
 stream_context_set_params().

Table of Contents
	Socket context options — Socket context option listing
	HTTP context options — HTTP context option listing
	FTP context options — FTP context option listing
	SSL context options — SSL context option listing
	Phar context options — Phar context option listing
	Context parameters — Context parameter listing
	Zip context options — Zip context option listing
	Zlib context options — Zlib context option listing

 Socket context option listing

 Socket context options

 Socket context options Socket context option listing

 Description

 Socket context options are available for all wrappers that work over
 sockets, like tcp, http and
 ftp.

 Options

 	bindto

 	

 Used to specify the IP address (either IPv4 or IPv6) and/or the
 port number that PHP will use to access the network. The syntax
 is ip:port for IPv4 addresses, and
 [ip]:port for IPv6 addresses.
 Setting the IP or the port to 0 will let the system
 choose the IP and/or port.

 Note:

 As FTP creates two socket connections during normal operation,
 the port number cannot be specified using this option.

 	backlog

 	

 Used to limit the number of outstanding connections in the
 socket's listen queue.

 Note:

 This is only applicable to stream_socket_server().

 	ipv6_v6only

 	

 Overrides the OS default regarding mapping IPv4 into IPv6.

 Note:

 This is important in particular when trying to listen on IPv4 addresses
 separately while there exists a binding on [::].

 This is only applicable to stream_socket_server().

 	so_reuseport

 	

 Allows multiple bindings to a same ip:port pair, even from separate processes.

 Note:

 This is only applicable to stream_socket_server().

 	so_broadcast

 	

 Enables sending and receiving data to/from broadcast addresses.

 Note:

 This is only applicable to stream_socket_server().

 	tcp_nodelay

 	

 Setting this option to true will set SOL_TCP,NO_DELAY=1
 appropriately, thus disabling the TCP Nagle algorithm.

 Changelog

 	Version
 	Description

 	7.1.0
 	
 Added tcp_nodelay.

 	7.0.1
 	
 Added ipv6_v6only.

 Examples

 Example #1 Basic bindto usage example

<?php
// connect to the internet using the '192.168.0.100' IP
$opts = array(
 'socket' => array(
 'bindto' => '192.168.0.100:0',
),
);

// connect to the internet using the '192.168.0.100' IP and port '7000'
$opts = array(
 'socket' => array(
 'bindto' => '192.168.0.100:7000',
),
);

// connect to the internet using the '2001:db8::1' IPv6 address
// and port '7000'
$opts = array(
 'socket' => array(
 'bindto' => '[2001:db8::1]:7000',
),
);

// connect to the internet using port '7000'
$opts = array(
 'socket' => array(
 'bindto' => '0:7000',
),
);

// create the context...
$context = stream_context_create($opts);

// ...and use it to fetch the data
echo file_get_contents('http://www.example.com', false, $context);

?>

 HTTP context option listing

 HTTP context options

 HTTP context options HTTP context option listing

 Description

 Context options for http:// and https://
 transports.

 Options

 	
 method
 string

 	

 GET, POST, or
 any other HTTP method supported by the remote server.

 Defaults to GET.

 	
 header
 array or string

 	

 Additional headers to be sent during request. Values
 in this option will override other values (such as
 User-agent:, Host:,
 and Authentication:),
 even when following Location: redirects.
 Thus it is not recommended to set a Host: header,
 if follow_location is enabled.

 	
 user_agent
 string

 	

 Value to send with User-Agent: header. This value will
 only be used if user-agent is not specified
 in the header context option above.

 By default the
 user_agent
 php.ini setting is used.

 	
 content
 string

 	

 Additional data to be sent after the headers. Typically used
 with POST or PUT requests.

 	
 proxy
 string

 	

 URI specifying address of proxy server. (e.g.
 tcp://proxy.example.com:5100).

 	
 request_fulluri
 bool

 	

 When set to true, the entire URI will be used when
 constructing the request. (e.g.
 GET http://www.example.com/path/to/file.html HTTP/1.0).
 While this is a non-standard request format, some
 proxy servers require it.

 Defaults to false.

 	
 follow_location
 int

 	

 Follow Location header redirects. Set to
 0 to disable.

 Defaults to 1.

 	
 max_redirects
 int

 	

 The max number of redirects to follow. Value 1 or
 less means that no redirects are followed.

 Defaults to 20.

 	
 protocol_version
 float

 	

 HTTP protocol version.

 Defaults to 1.1 as of PHP 8.0.0;
 prior to that version the default was 1.0.

 	
 timeout
 float

 	

 Read timeout in seconds, specified by a float
 (e.g. 10.5).

 By default the
 default_socket_timeout
 php.ini setting is used.

 	
 ignore_errors
 bool

 	

 Fetch the content even on failure status codes.

 Defaults to false.

 Examples

 Example #1 Fetch a page and send POST data

<?php

$postdata = http_build_query(
 array(
 'var1' => 'some content',
 'var2' => 'doh'
)
);

$opts = array('http' =>
 array(
 'method' => 'POST',
 'header' => 'Content-type: application/x-www-form-urlencoded',
 'content' => $postdata
)
);

$context = stream_context_create($opts);

$result = file_get_contents('http://example.com/submit.php', false, $context);

?>

 Example #2 Ignore redirects but fetch headers and content

<?php

$url = "http://www.example.org/header.php";

$opts = array('http' =>
 array(
 'method' => 'GET',
 'max_redirects' => '0',
 'ignore_errors' => '1'
)
);

$context = stream_context_create($opts);
$stream = fopen($url, 'r', false, $context);

// header information as well as meta data
// about the stream
var_dump(stream_get_meta_data($stream));

// actual data at $url
var_dump(stream_get_contents($stream));
fclose($stream);
?>

 Notes

 Note:
 Underlying socket stream context options

 Additional context options may be supported by the
 underlying transport
 For http:// streams, refer to context
 options for the tcp:// transport. For
 https:// streams, refer to context options
 for the ssl:// transport.

 Note:
 HTTP status line

 When this stream wrapper follows a redirect, the
 wrapper_data returned by
 stream_get_meta_data() might not necessarily contain
 the HTTP status line that actually applies to the content data at index
 0.

array (
 'wrapper_data' =>
 array (
 0 => 'HTTP/1.0 301 Moved Permanently',
 1 => 'Cache-Control: no-cache',
 2 => 'Connection: close',
 3 => 'Location: http://example.com/foo.jpg',
 4 => 'HTTP/1.1 200 OK',
 ...

 The first request returned a 301 (permanent redirect),
 so the stream wrapper automatically followed the redirect to get a
 200 response (index = 4).

 See Also

 	http://

 	Socket context options

 	SSL context options

 FTP context option listing

 FTP context options

 FTP context options FTP context option listing

 Description

 Context options for ftp:// and ftps://
 transports.

 Options

 	
 overwrite
 bool

 	

 Allow overwriting of already existing files on remote server.
 Applies to write mode (uploading) only.

 Defaults to false.

 	
 resume_pos
 int

 	

 File offset at which to begin transfer. Applies to read mode (downloading) only.

 Defaults to 0 (Beginning of File).

 	
 proxy
 string

 	

 Proxy FTP request via http proxy server. Applies to file read
 operations only. Ex: tcp://squid.example.com:8000.

 Notes

 Note:
 Underlying socket stream context options

 Additional context options may be supported by the
 underlying transport
 For ftp:// streams, refer to context
 options for the tcp:// transport. For
 ftps:// streams, refer to context options
 for the ssl:// transport.

 See Also

 	ftp://

 	Socket context options

 	SSL context options

 SSL context option listing

 SSL context options

 SSL context options SSL context option listing

 Description

 Context options for ssl:// and tls://
 transports.

 Options

 	
 peer_name
 string

 	

 Peer name to be used. If this value is not set, then the name is guessed
 based on the hostname used when opening the stream.

 	
 verify_peer
 bool

 	

 Require verification of SSL certificate used.

 Defaults to true.

 	
 verify_peer_name
 bool

 	

 Require verification of peer name.

 Defaults to true.

 	
 allow_self_signed
 bool

 	

 Allow self-signed certificates. Requires
 verify_peer.

 Defaults to false

 	
 cafile
 string

 	

 Location of Certificate Authority file on local filesystem
 which should be used with the verify_peer
 context option to authenticate the identity of the remote peer.

 	
 capath
 string

 	

 If cafile is not specified or if the certificate
 is not found there, the directory pointed to by capath
 is searched for a suitable certificate. capath
 must be a correctly hashed certificate directory.

 	
 local_cert
 string

 	

 Path to local certificate file on filesystem. It must be a
 PEM encoded file which contains your certificate and
 private key. It can optionally contain the certificate chain of issuers.
 The private key also may be contained in a separate file specified
 by local_pk.

 	
 local_pk
 string

 	

 Path to local private key file on filesystem in case of separate
 files for certificate (local_cert) and private key.

 	
 passphrase
 string

 	

 Passphrase with which your local_cert file
 was encoded.

 	
 verify_depth
 int

 	

 Abort if the certificate chain is too deep.

 Defaults to no verification.

 	
 ciphers
 string

 	

 Sets the list of available ciphers. The format of the string is described
 in ciphers(1).

 Defaults to DEFAULT.

 	
 capture_peer_cert
 bool

 	

 If set to true a peer_certificate context option
 will be created containing the peer certificate.

 	
 capture_peer_cert_chain
 bool

 	

 If set to true a peer_certificate_chain context
 option will be created containing the certificate chain.

 	
 SNI_enabled
 bool

 	

 If set to true server name indication will be enabled. Enabling SNI
 allows multiple certificates on the same IP address.

 	
 disable_compression
 bool

 	

 If set, disable TLS compression. This can help mitigate the CRIME attack
 vector.

 	
 peer_fingerprint
 string | array

 	

 Aborts when the remote certificate digest doesn't match the specified
 hash.

 When a string is used, the length will determine which hashing algorithm
 is applied, either "md5" (32) or "sha1" (40).

 When an array is used, the keys indicate the hashing algorithm name
 and each corresponding value is the expected digest.

 	
 security_level
 int

 	

 Sets the security level. If not specified the library default security level is used.
 The security levels are described in
 SSL_CTX_get_security_level(3).

 Available as of PHP 7.2.0 and OpenSSL 1.1.0.

 Changelog

 	Version
 	Description

 	7.2.0
 	
 Added security_level. Requires OpenSSL >= 1.1.0.

 Notes

 Note:

 Because ssl:// is the underlying transport for the
 https:// and
 ftps:// wrappers,
 any context options which apply to ssl:// also apply to
 https:// and ftps://.

 Note:

 For SNI (Server Name Indication) to be available, then PHP must be compiled
 with OpenSSL 0.9.8j or greater. Use the
 OPENSSL_TLSEXT_SERVER_NAME to determine whether SNI is
 supported.

 See Also

 	Socket context options

 Phar context option listing

 Phar context options

 Phar context options Phar context option listing

 Description

 Context options for phar:// wrapper.

 Options

 	
 compress
 int

 	

 One of Phar compression constants.

 	
 metadata
 mixed

 	

 Phar metadata. See Phar::setMetadata().

 See Also

 	phar://

 	Phar stream wrapper

 Context parameter listing

 Context parameters

 Context parameters Context parameter listing

 Description

 These parameters can be set on a context
 using the stream_context_set_params() function.

 Parameters

 	
 notification
 callable

 	

 A callable to be called when an event occurs on a stream.

 See
 stream_notification_callback for more details.

 Zip context option listing

 Zip context options

 Zip context options Zip context option listing

 Description

 Zip context options are available for zip wrappers.

 Options

 	password

 	

 Used to specify password used for encrypted archive.

 Changelog

 	Version
 	Description

 	PHP 7.2.0, PECL zip 1.14.0
 	
 Added password.

 Examples

 Example #1 Basic password usage example

<?php
// Read encrypted archive
$opts = array(
 'zip' => array(
 'password' => 'secret',
),
);
// create the context...
$context = stream_context_create($opts);

// ...and use it to fetch the data
echo file_get_contents('zip://test.zip#test.txt', false, $context);

?>

 Zlib context option listing

 Zlib context options

 Zlib context options Zlib context option listing

 Description

 Zlib context options are available for zlib wrappers.

 Options

 	level

 	

 Used to specify the compression level (0 - 9).

 Changelog

 	Version
 	Description

 	7.3.0
 	
 level has been added.

 Supported Protocols and Wrappers

 Supported Protocols and Wrappers

 PHP comes with many built-in wrappers for various URL-style protocols
 for use with the filesystem functions such as fopen(),
 copy(), file_exists() and
 filesize().
 In addition to these wrappers, it is possible to register custom wrappers
 using the stream_wrapper_register() function.

 Note:

 The URL syntax used to describe a wrapper only supports the
 scheme://... syntax. The scheme:/
 and scheme: syntaxes are not supported.

Table of Contents
	file:// — Accessing local filesystem
	http:// — Accessing HTTP(s) URLs
	ftp:// — Accessing FTP(s) URLs
	php:// — Accessing various I/O streams
	zlib:// — Compression Streams
	data:// — Data (RFC 2397)
	glob:// — Find pathnames matching pattern
	phar:// — PHP Archive
	ssh2:// — Secure Shell 2
	rar:// — RAR
	ogg:// — Audio streams
	expect:// — Process Interaction Streams

 Accessing local filesystem

 file://

 file:// Accessing local filesystem

 Description

 Filesystem is the default wrapper used with PHP and represents the local filesystem.
 When a relative path is specified (a path which does not begin with /, \, \\, or a Windows drive letter)
 the path provided will be applied against the current working directory. In many cases this is the
 directory in which the script resides unless it has been changed. Using the CLI sapi, this defaults
 to the directory from which the script was called.

 With some functions, such as fopen() and file_get_contents(),
 include_path may be optionally searched for relative paths as well.

 Usage

 	/path/to/file.ext

 	relative/path/to/file.ext

 	fileInCwd.ext

 	C:/path/to/winfile.ext

 	C:\path\to\winfile.ext

 	\\smbserver\share\path\to\winfile.ext

 	file:///path/to/file.ext

 Options

 Wrapper Summary

 	Attribute
 	Supported

 	Restricted by allow_url_fopen
 	No

 	Allows Reading
 	Yes

 	Allows Writing
 	Yes

 	Allows Appending
 	Yes

 	Allows Simultaneous Reading and Writing
 	Yes

 	Supports stat()
 	Yes

 	Supports unlink()
 	Yes

 	Supports rename()
 	Yes

 	Supports mkdir()
 	Yes

 	Supports rmdir()
 	Yes

 Accessing HTTP(s) URLs

 http://

 https://

 http:// -- https:// Accessing HTTP(s) URLs

 Description

 Allows read-only access to files/resources via HTTP.
 By default, a HTTP 1.0 GET is used. A Host: header is sent with the request
 to handle name-based virtual hosts. If you have configured
 a user_agent string using
 your php.ini file or the stream context, it will also be included
 in the request.

 The stream allows access to the body of
 the resource; the headers are stored in the
 $http_response_header variable.

 If it's important to know the URL of the resource where
 your document came from (after all redirects have been processed),
 you'll need to process the series of response headers returned by the
 stream.

 The from directive will be used for the
 From: header if set and not overwritten by the
 Context options and parameters.

 Usage

 	http://example.com

 	http://example.com/file.php?var1=val1&var2=val2

 	http://user:password@example.com

 	https://example.com

 	https://example.com/file.php?var1=val1&var2=val2

 	https://user:password@example.com

 Options

 Wrapper Summary

 	Attribute
 	Supported

 	Restricted by allow_url_fopen
 	Yes

 	Allows Reading
 	Yes

 	Allows Writing
 	No

 	Allows Appending
 	No

 	Allows Simultaneous Reading and Writing
 	N/A

 	Supports stat()
 	No

 	Supports unlink()
 	No

 	Supports rename()
 	No

 	Supports mkdir()
 	No

 	Supports rmdir()
 	No

 Examples

 Example #1 Detecting which URL we ended up on after redirects

<?php
$url = 'http://www.example.com/redirecting_page.php';

$fp = fopen($url, 'r');

$meta_data = stream_get_meta_data($fp);
foreach ($meta_data['wrapper_data'] as $response) {

 /* Were we redirected? */
 if (strtolower(substr($response, 0, 10)) == 'location: ') {

 /* update $url with where we were redirected to */
 $url = substr($response, 10);
 }

}

?>

 Notes

 Note:

 HTTPS is only supported when the openssl
 extension is enabled.

 HTTP connections are read-only; writing data or copying
 files to an HTTP resource is not supported.

 Sending POST and PUT requests, for example,
 can be done with the help of HTTP Contexts.

 See Also

 	HTTP context options

 	$http_response_header

 	stream_get_meta_data() - Retrieves header/meta data from streams/file pointers

 Accessing FTP(s) URLs

 ftp://

 ftps://

 ftp:// -- ftps:// Accessing FTP(s) URLs

 Description

 Allows read access to existing files and creation of new files
 via FTP. If the server does not support passive mode ftp, the
 connection will fail.

 You can open files for either reading or writing, but not both
 simultaneously. If the remote file already exists on the ftp
 server and you attempt to open it for writing but have not specified
 the context option overwrite, the connection
 will fail. If you need to overwrite existing files over ftp,
 specify the overwrite option in the context
 and open the file for writing. Alternatively, you can
 use the FTP extension.

 If you have set the from directive
 in php.ini, then this value will be sent as the anonymous FTP
 password.

 Usage

 	ftp://example.com/pub/file.txt

 	ftp://user:password@example.com/pub/file.txt

 	ftps://example.com/pub/file.txt

 	ftps://user:password@example.com/pub/file.txt

 Options

 Wrapper Summary

 	Attribute
 	Supported

 	Restricted by allow_url_fopen
 	Yes

 	Allows Reading
 	Yes

 	Allows Writing
 	Yes (new files/existing files with overwrite)

 	Allows Appending
 	Yes

 	Allows Simultaneous Reading and Writing
 	No

 	Supports stat()
 	
 filesize(), filemtime(),
 filetype(), file_exists(),
 is_file(), and is_dir()
 elements only.

 	Supports unlink()
 	Yes

 	Supports rename()
 	Yes

 	Supports mkdir()
 	Yes

 	Supports rmdir()
 	Yes

 Notes

 Note:

 FTPS is only supported when the openssl
 extension is enabled.

 If the server does not support SSL, then the connection falls back
 to regular unencrypted ftp.

 Note:
 Appending

 Files may be appended via the ftp:// URL wrapper.

 See Also

 	FTP context options

 Accessing various I/O streams

 php://

 php:// Accessing various I/O streams

 Description

 PHP provides a number of miscellaneous I/O streams that allow access to
 PHP's own input and output streams, the standard input, output and error
 file descriptors, in-memory and disk-backed temporary file streams, and
 filters that can manipulate other file resources as they are read from and
 written to.

 php://stdin, php://stdout and php://stderr

 php://stdin, php://stdout and
 php://stderr allow direct access to the corresponding
 input or output stream of the PHP process. The stream references a
 duplicate file descriptor, so if you open php://stdin
 and later close it, you close only your copy of the descriptor-the actual
 stream referenced by STDIN is unaffected.
 It is
 recommended that you simply use the constants STDIN,
 STDOUT and STDERR instead of
 manually opening streams using these wrappers.

 php://stdin is read-only, whereas
 php://stdout and php://stderr are
 write-only.

 php://input

 php://input is a read-only stream that allows you to
 read raw data from the request body.
 php://input is not available in POST requests with
 enctype="multipart/form-data" if
 enable_post_data_reading
 option is enabled.

 php://output

 php://output is a write-only stream that allows you to
 write to the output buffer mechanism in the same way as
 print and echo.

 php://fd

 php://fd allows direct access to the given file
 descriptor. For example, php://fd/3 refers to file
 descriptor 3.

 php://memory and php://temp

 php://memory and php://temp are
 read-write streams that allow temporary data to be stored in a file-like
 wrapper. One difference between the two is that
 php://memory will always store its data in memory,
 whereas php://temp will use a temporary file once the
 amount of data stored hits a predefined limit (the default is 2 MB). The
 location of this temporary file is determined in the same way as the
 sys_get_temp_dir() function.

 The memory limit of php://temp can be controlled by
 appending /maxmemory:NN, where NN is
 the maximum amount of data to keep in memory before using a temporary
 file, in bytes.

 Caution

 Some PHP extensions may require a standard IO stream,
 and may attempt to cast a given stream to a standard IO stream.
 This cast can fail for memory streams as it requires the C
 fopencookie() function to be available.
 This C function is not available on Windows.

 php://filter

 php://filter is a kind of meta-wrapper designed to
 permit the application of filters to a
 stream at the time of opening. This is useful with all-in-one file
 functions such as readfile(),
 file(), and file_get_contents()
 where there is otherwise no opportunity to apply a filter to the stream
 prior the contents being read.

 The php://filter target takes the following parameters
 as part of its path. Multiple filter chains can be specified on one path.
 Please refer to the examples for specifics on using these parameters.

 php://filter parameters

 	Name
 	Description

 	
 resource=<stream to be filtered>

 	
 This parameter is required. It specifies the stream that you would
 like to filter.

 	
 read=<filter list to apply to read chain>

 	
 This parameter is optional. One or more filter names can be provided
 here, separated by the pipe character (|).

 	
 write=<filter list to apply to write chain>

 	
 This parameter is optional. One or more filter names can be provided
 here, separated by the pipe character (|).

 	
 <filter list to apply to both chains>

 	
 Any filter lists which are not prefixed by read=
 or write= will be applied to both the read and
 write chains as appropriate.

 Options

 Wrapper Summary (for php://filter, refer to the
 summary of the wrapper being filtered)

 	Attribute
 	Supported

 	Restricted by allow_url_fopen
 	No

 	Restricted by allow_url_include
 	
 php://input,
 php://stdin,
 php://memory and
 php://temp only.

 	Allows Reading
 	
 php://stdin,
 php://input,
 php://fd,
 php://memory and
 php://temp only.

 	Allows Writing
 	
 php://stdout,
 php://stderr,
 php://output,
 php://fd,
 php://memory and
 php://temp only.

 	Allows Appending
 	
 php://stdout,
 php://stderr,
 php://output,
 php://fd,
 php://memory and
 php://temp only. (Equivalent to writing)

 	Allows Simultaneous Reading and Writing
 	
 php://fd,
 php://memory and
 php://temp only.

 	Supports stat()
 	
 No. However, php://memory and
 php://temp support fstat().

 	Supports unlink()
 	No

 	Supports rename()
 	No

 	Supports mkdir()
 	No

 	Supports rmdir()
 	No

 	Supports stream_select()
 	
 php://stdin,
 php://stdout,
 php://stderr,
 php://fd and
 php://temp only.

 Examples

 Example #1 php://temp/maxmemory

 This optional parameter allows setting the memory limit before
 php://temp starts using a temporary file.

<?php
// Set the limit to 5 MB.
$fiveMBs = 5 * 1024 * 1024;
$fp = fopen("php://temp/maxmemory:$fiveMBs", 'r+');

fputs($fp, "hello\n");

// Read what we have written.
rewind($fp);
echo stream_get_contents($fp);
?>

 Example #2 php://filter/resource=<stream to be filtered>

 This parameter must be located at
 the end of your php://filter specification and
 should point to the stream which you want filtered.

<?php
/* This is equivalent to simply:
 readfile("http://www.example.com");
 since no filters are actually specified */

readfile("php://filter/resource=http://www.example.com");
?>

 Example #3 php://filter/read=<filter list to apply to read chain>

 This parameter takes one or more
 filternames separated by the pipe character |.

<?php
/* This will output the contents of
 www.example.com entirely in uppercase */
readfile("php://filter/read=string.toupper/resource=http://www.example.com");

/* This will do the same as above
 but will also ROT13 encode it */
readfile("php://filter/read=string.toupper|string.rot13/resource=http://www.example.com");
?>

 Example #4 php://filter/write=<filter list to apply to write chain>

 This parameter takes one or more
 filternames separated by the pipe character |.

<?php
/* This will filter the string "Hello World"
 through the rot13 filter, then write to
 example.txt in the current directory */
file_put_contents("php://filter/write=string.rot13/resource=example.txt","Hello World");
?>

 Example #5 php://memory and php://temp are not reusable

 php://memory and php://temp
 are not reusable, i.e. after the streams have been closed there is no way
 to refer to them again.

file_put_contents('php://memory', 'PHP');
echo file_get_contents('php://memory'); // prints nothing

 Compression Streams

 zlib://

 bzip2://

 zip://

 zlib:// -- bzip2:// -- zip:// Compression Streams

 Description

 compress.zlib:// and compress.bzip2://

 zlib: works like gzopen(), except that the
 stream can be used with fread() and the other
 filesystem functions. This is deprecated due
 to ambiguities with filenames containing ':' characters; use
 compress.zlib:// instead.

 compress.zlib:// and
 compress.bzip2:// are equivalent to
 gzopen() and bzopen()
 respectively, and operate even on systems that do not support
 fopencookie.

 ZIP extension registers zip: wrapper. As of
 PHP 7.2.0 and libzip 1.2.0+, support for the passwords for encrypted archives were added, allowing
 passwords to be supplied by stream contexts. Passwords can be set using the 'password'
 stream context option.

 Usage

 	compress.zlib://file.gz

 	compress.bzip2://file.bz2

 	zip://archive.zip#dir/file.txt

 Options

 Wrapper Summary

 	Attribute
 	Supported

 	Restricted by allow_url_fopen
 	No

 	Allows Reading
 	Yes

 	Allows Writing
 	Yes (except zip://)

 	Allows Appending
 	Yes (except zip://)

 	Allows Simultaneous Reading and Writing
 	No

 	Supports stat()
 	
 No, use the normal file:// wrapper
 to stat compressed files.

 	Supports unlink()
 	
 No, use the normal file:// wrapper
 to unlink compressed files.

 	Supports rename()
 	No

 	Supports mkdir()
 	No

 	Supports rmdir()
 	No

 See Also

 	Zlib context options

 Data (RFC 2397)

 data://

 data:// Data (RFC 2397)

 Description

 The data: (RFC
 2397) stream wrapper.

 Usage

 	data://text/plain;base64,

 Options

 Wrapper Summary

 	Attribute
 	Supported

 	Restricted by allow_url_fopen
 	Yes

 	Restricted by allow_url_include
 	Yes

 	Allows Reading
 	Yes

 	Allows Writing
 	No

 	Allows Appending
 	No

 	Allows Simultaneous Reading and Writing
 	No

 	Supports stat()
 	No

 	Supports unlink()
 	No

 	Supports rename()
 	No

 	Supports mkdir()
 	No

 	Supports rmdir()
 	No

 Examples

 Example #1 Print data:// contents

<?php
// prints "I love PHP"
echo file_get_contents('data://text/plain;base64,SSBsb3ZlIFBIUAo=');
?>

 Example #2 Fetch the media type

<?php
$fp = fopen('data://text/plain;base64,', 'r');
$meta = stream_get_meta_data($fp);

// prints "text/plain"
echo $meta['mediatype'];
?>

 Find pathnames matching pattern

 glob://

 glob:// Find pathnames matching pattern

 Description

 The glob: stream wrapper.

 Usage

 	glob://

 Options

 Wrapper Summary

 	Attribute
 	Supported

 	Restricted by allow_url_fopen
 	No

 	Restricted by allow_url_include
 	No

 	Allows Reading
 	No

 	Allows Writing
 	No

 	Allows Appending
 	No

 	Allows Simultaneous Reading and Writing
 	No

 	Supports stat()
 	No

 	Supports unlink()
 	No

 	Supports rename()
 	No

 	Supports mkdir()
 	No

 	Supports rmdir()
 	No

 Examples

 Example #1 Basic usage

<?php
// Loop over all *.php files in ext/spl/examples/ directory
// and print the filename and its size
$it = new DirectoryIterator("glob://ext/spl/examples/*.php");
foreach($it as $f) {
 printf("%s: %.1FK\n", $f->getFilename(), $f->getSize()/1024);
}
?>

tree.php: 1.0K
findregex.php: 0.6K
findfile.php: 0.7K
dba_dump.php: 0.9K
nocvsdir.php: 1.1K
phar_from_dir.php: 1.0K
ini_groups.php: 0.9K
directorytree.php: 0.9K
dba_array.php: 1.1K
class_tree.php: 1.8K

 PHP Archive

 phar://

 phar:// PHP Archive

 Description

 The phar:// stream wrapper.
 See Phar stream wrapper
 for a detailed description.

 Usage

 	phar://

 Options

 Wrapper Summary

 	Attribute
 	Supported

 	Restricted by allow_url_fopen
 	No

 	Restricted by allow_url_include
 	No

 	Allows Reading
 	Yes

 	Allows Writing
 	Yes

 	Allows Appending
 	No

 	Allows Simultaneous Reading and Writing
 	Yes

 	Supports stat()
 	Yes

 	Supports unlink()
 	Yes

 	Supports rename()
 	Yes

 	Supports mkdir()
 	Yes

 	Supports rmdir()
 	Yes

 See Also

 	Phar context options

 Secure Shell 2

 ssh2://

 ssh2:// Secure Shell 2

 Description

 ssh2.shell://
 ssh2.exec://
 ssh2.tunnel://
 ssh2.sftp://
 ssh2.scp://
 (PECL)

 Note:
 This wrapper is not enabled by default

 In order to use the ssh2.*:// wrappers,
 the
 SSH2
 extension available from PECL must be installed.

 In addition to accepting traditional URI login details, the ssh2 wrappers
 will also reuse open connections by passing the connection resource in the
 host portion of the URL.

 Usage

 	ssh2.shell://user:pass@example.com:22/xterm

 	ssh2.exec://user:pass@example.com:22/usr/local/bin/somecmd

 	ssh2.tunnel://user:pass@example.com:22/192.168.0.1:14

 	ssh2.sftp://user:pass@example.com:22/path/to/filename

 Options

 Wrapper Summary

 	Attribute
 	ssh2.shell
 	ssh2.exec
 	ssh2.tunnel
 	ssh2.sftp
 	ssh2.scp

 	Restricted by allow_url_fopen
 	Yes
 	Yes
 	Yes
 	Yes
 	Yes

 	Allows Reading
 	Yes
 	Yes
 	Yes
 	Yes
 	Yes

 	Allows Writing
 	Yes
 	Yes
 	Yes
 	Yes
 	No

 	Allows Appending
 	No
 	No
 	No
 	Yes (When supported by server)
 	No

 	Allows Simultaneous Reading and Writing
 	Yes
 	Yes
 	Yes
 	Yes
 	No

 	Supports stat()
 	No
 	No
 	No
 	Yes
 	No

 	Supports unlink()
 	No
 	No
 	No
 	Yes
 	No

 	Supports rename()
 	No
 	No
 	No
 	Yes
 	No

 	Supports mkdir()
 	No
 	No
 	No
 	Yes
 	No

 	Supports rmdir()
 	No
 	No
 	No
 	Yes
 	No

 Context options

 	Name
 	Usage
 	Default

 	session
 	Preconnected ssh2 resource to be reused
 	

 	sftp
 	Preallocated sftp resource to be reused
 	

 	methods
 	Key exchange, hostkey, cipher, compression, and MAC methods to use
 	

 	callbacks
 	
 	

 	username
 	Username to connect as
 	

 	password
 	Password to use with password authentication
 	

 	pubkey_file
 	Name of public key file to use for authentication
 	

 	privkey_file
 	Name of private key file to use for authentication
 	

 	env
 	Associate array of environment variables to set
 	

 	term
 	Terminal emulation type to request when allocating a pty
 	

 	term_width
 	Width of terminal requested when allocating a pty
 	

 	term_height
 	Height of terminal requested when allocating a pty
 	

 	term_units
 	Units to use with term_width and term_height
 	SSH2_TERM_UNIT_CHARS

 Examples

 Example #1 Opening a stream from an active connection

<?php
$session = ssh2_connect('example.com', 22);
ssh2_auth_pubkey_file($session, 'username', '/home/username/.ssh/id_rsa.pub',
 '/home/username/.ssh/id_rsa', 'secret');
$stream = fopen("ssh2.tunnel://$session/remote.example.com:1234", 'r');
?>

 Example #2 This $session variable must be kept available!

 In order to use the ssh2.*://$session wrappers,
 the $session resource variable must be kept.
 The code below will not have the desired effect:

<?php
$session = ssh2_connect('example.com', 22);
ssh2_auth_pubkey_file($session, 'username', '/home/username/.ssh/id_rsa.pub',
 '/home/username/.ssh/id_rsa', 'secret');
$connection_string = "ssh2.sftp://$session/";
unset($session);
$stream = fopen($connection_string . "path/to/file", 'r');
?>

 unset() closes the session, because $connection_string does not
 hold a reference to the $session variable, just a string cast
 derived from it. This also happens when the unset() is implicit
 because of leaving scope (like in a function).

 RAR

 rar://

 rar:// RAR

 Description

 The wrapper takes the url encoded path to the RAR archive (relative or absolute),
 an optional asterisk (*), an optional number sign
 (#) and an optional url encoded entry name, as stored in the
 archive. Specifying an entry name requires the number sign; a leading forward
 slash in the entry name is optional.

 This wrapper can open both files and directories. When opening directories, the
 asterisk sign forces the directory entries names to be returned unencoded. If it's
 not specified, they will be returned url encoded – the reason for this is to allow
 the wrapper to be correctly used with built-in functionality like the
 RecursiveDirectoryIterator in the presence of file names that seem like
 url encoded data.

 If the pound sign and the entry name part are not included, the root of the archive
 will be displayed. This differs from regular directories in that the resulting
 stream will not contain information such as the modification time, as the root
 directory is not stored in an individual entry in the archive.
 The usage of the wrapper with RecursiveDirectoryIterator requires
 the number sign to be included in the URL when accessing the root, so that the
 URLs of the children may be constructed correctly.

 Note:
 This wrapper is not enabled by default

 In order to use the rar:// wrapper,
 the
 rar
 extension available from PECL must be installed.

 rar://
 Available since PECL rar 3.0.0

 Usage

 	rar://<url encoded archive name>[*][#[<url encoded entry name>]]

 Options

 Wrapper Summary

 	Attribute
 	Supported

 	Restricted by allow_url_fopen
 	No

 	Restricted by allow_url_include
 	No

 	Allows Reading
 	Yes

 	Allows Writing
 	No

 	Allows Appending
 	No

 	Allows Simultaneous Reading and Writing
 	No

 	Supports stat()
 	Yes

 	Supports unlink()
 	No

 	Supports rename()
 	No

 	Supports mkdir()
 	No

 	Supports rmdir()
 	No

 Context options

 	Name
 	Usage
 	Default

 	open_password
 	The password used to encrypt the headers of the archive,
 if any. WinRAR will encrypt all the files with the same password
 as the headers password when the later is present, so for archives
 with encrypted headers, file_password will be
 ignored.

 	

 	file_password
 	The password used to encrypt a file, if any. If the headers
 are also encrypted, this option will be ignored in favor of
 open_password. The reason there are two options
 is to cover the possibility of supporting archives with different
 headers and file passwords, should those archives arise. Note that
 if the archive does not have its headers encrypted,
 open_password will be ignored and this option
 must be used instead.

 	

 	volume_callback
 	A callback to determine the path of missing volumes. See
 RarArchive::open() for more information.

 	

 Examples

 Example #1 Traversing a RAR archive

<?php

class MyRecDirIt extends RecursiveDirectoryIterator {
 function current() {
 return rawurldecode($this->getSubPathName()) .
 (is_dir(parent::current())?" [DIR]":"");
 }
}

$f = "rar://" . rawurlencode(dirname(__FILE__)) .
 DIRECTORY_SEPARATOR . 'dirs_and_extra_headers.rar#';

$it = new RecursiveTreeIterator(new MyRecDirIt($f));

foreach ($it as $s) {
 echo $s, "\n";
}
?>

 The above example will output
something similar to:

|-allow_everyone_ni [DIR]
|-file1.txt
|-file2_אּ.txt
|-with_streams.txt
\-אּ [DIR]
 |-אּ\%2Fempty%2E [DIR]
 | \-אּ\%2Fempty%2E\file7.txt
 |-אּ\empty [DIR]
 |-אּ\file3.txt
 |-אּ\file4_אּ.txt
 \-אּ\אּ_2 [DIR]
 |-אּ\אּ_2\file5.txt
 \-אּ\אּ_2\file6_אּ.txt

 Example #2 Opening an encrypted file (header encryption)

<?php
$stream = fopen("rar://" .
 rawurlencode(dirname(__FILE__)) . DIRECTORY_SEPARATOR .
 'encrypted_headers.rar' . '#encfile1.txt', "r", false,
 stream_context_create(
 array(
 'rar' =>
 array(
 'open_password' => 'samplepassword'
)
)
)
);
var_dump(stream_get_contents($stream));
/* creation and last access date is opt-in in WinRAR, hence most
 * files don't have them */
var_dump(fstat($stream));
?>

 The above example will output
something similar to:

string(26) "Encrypted file 1 contents."
Array
(
 [0] => 0
 [1] => 0
 [2] => 33206
 [3] => 1
 [4] => 0
 [5] => 0
 [6] => 0
 [7] => 26
 [8] => 0
 [9] => 1259550052
 [10] => 0
 [11] => -1
 [12] => -1
 [dev] => 0
 [ino] => 0
 [mode] => 33206
 [nlink] => 1
 [uid] => 0
 [gid] => 0
 [rdev] => 0
 [size] => 26
 [atime] => 0
 [mtime] => 1259550052
 [ctime] => 0
 [blksize] => -1
 [blocks] => -1
)

 Audio streams

 ogg://

 ogg:// Audio streams

 Description

 Files opened for reading via the ogg:// wrapper
 are treated as compressed audio encoded using the OGG/Vorbis codec.
 Similarly, files opened for writing or appending via the
 ogg:// wrapper are written as compressed audio data.
 stream_get_meta_data(), when used on an OGG/Vorbis
 file opened for reading will return various details about the stream
 including the vendor tag, any included
 comments, the number of
 channels, the sampling rate,
 and the encoding rate range described by:
 bitrate_lower, bitrate_upper,
 bitrate_nominal, and bitrate_window.

 ogg:// (PECL)

 Note:
 This wrapper is not enabled by default

 In order to use the ogg:// wrapper,
 the
 OGG/Vorbis
 extension available from PECL must be installed.

 Usage

 	ogg://soundfile.ogg

 	ogg:///path/to/soundfile.ogg

 	ogg://http://www.example.com/path/to/soundstream.ogg

 Options

 Wrapper Summary

 	Attribute
 	Supported

 	Restricted by allow_url_fopen
 	No

 	Allows Reading
 	Yes

 	Allows Writing
 	Yes

 	Allows Appending
 	Yes

 	Allows Simultaneous Reading and Writing
 	No

 	Supports stat()
 	No

 	Supports unlink()
 	No

 	Supports rename()
 	No

 	Supports mkdir()
 	No

 	Supports rmdir()
 	No

 Context options

 	Name
 	Usage
 	Default
 	Mode

 	pcm_mode
 	
 PCM encoding to apply while reading, one of:
 OGGVORBIS_PCM_U8, OGGVORBIS_PCM_S8,
 OGGVORBIS_PCM_U16_BE, OGGVORBIS_PCM_S16_BE,
 OGGVORBIS_PCM_U16_LE, and OGGVORBIS_PCM_S16_LE.
 (8 vs 16 bit, signed or unsigned, big or little endian)

 	OGGVORBIS_PCM_S16_LE
 	Read

 	rate
 	
 Sampling rate of input data, expressed in Hz

 	44100
 	Write/Append

 	bitrate
 	
 When given as an integer, the fixed bitrate at which to encode. (16000 to 131072)
 When given as a float, the variable bitrate quality to use. (-1.0 to 1.0)

 	128000
 	Write/Append

 	channels
 	
 The number of audio channels to encode, typically 1 (Mono), or 2 (Stereo).
 May range as high as 16.

 	2
 	Write/Append

 	comments
 	
 An array of string values to encode into the track header.

 	
 	Write/Append

 Process Interaction Streams

 expect://

 expect:// Process Interaction Streams

 Description

 Streams opened via the expect:// wrapper provide
 access to process'es stdio, stdout and stderr via PTY.

 Note:
 This wrapper is not enabled by default

 In order to use the expect:// wrapper,
 the
 Expect
 extension available from PECL must be installed.

 expect:// (PECL)

 Usage

 	expect://command

 Options

 Wrapper Summary

 	Attribute
 	Supported

 	Restricted by allow_url_fopen
 	No

 	Allows Reading
 	Yes

 	Allows Writing
 	Yes

 	Allows Appending
 	Yes

 	Allows Simultaneous Reading and Writing
 	No

 	Supports stat()
 	No

 	Supports unlink()
 	No

 	Supports rename()
 	No

 	Supports mkdir()
 	No

 	Supports rmdir()
 	No

 Security

 Security

 	Introduction
	General considerations
	Installed as CGI binary	Possible attacks
	Case 1: only public files served
	Case 2: using cgi.force_redirect
	Case 3: setting doc_root or user_dir
	Case 4: PHP parser outside of web tree

	Installed as an Apache module
	Session Security
	Filesystem Security	Null bytes related issues

	Database Security	Designing Databases
	Connecting to Database
	Encrypted Storage Model
	SQL Injection

	Error Reporting
	User Submitted Data
	Hiding PHP
	Keeping Current

 Introduction

 Introduction

 PHP is a powerful language and the interpreter, whether included
 in a web server as a module or executed as a separate
 CGI binary, is able to access files, execute
 commands and open network connections on the server. These
 properties make anything run on a web server insecure by default.
 PHP is designed specifically to be a more secure language for
 writing CGI programs than Perl or C, and with correct selection of
 compile-time and runtime configuration options, and proper coding
 practices, it can give you exactly the combination of freedom and
 security you need.

 As there are many different ways of utilizing PHP, there are many
 configuration options controlling its behaviour. A large
 selection of options guarantees you can use PHP for a lot of
 purposes, but it also means there are combinations of these
 options and server configurations that result in an insecure
 setup.

 The configuration flexibility of PHP is equally rivalled by the
 code flexibility. PHP can be used to build complete server
 applications, with all the power of a shell user, or it can be used
 for simple server-side includes with little risk in a tightly
 controlled environment. How you build that environment, and how
 secure it is, is largely up to the PHP developer.

 This chapter starts with some general security advice, explains
 the different configuration option combinations and the situations
 they can be safely used, and describes different considerations in
 coding for different levels of security.

 General considerations

 General considerations

 A completely secure system is a virtual impossibility, so an
 approach often used in the security profession is one of balancing
 risk and usability. If every variable submitted by a user required
 two forms of biometric validation (such as a retinal scan and a
 fingerprint), you would have an extremely high level of
 accountability. It would also take half an hour to fill out a fairly
 complex form, which would tend to encourage users to find ways of
 bypassing the security.

 The best security is often unobtrusive enough to suit the
 requirements without the user being prevented from accomplishing
 their work, or over-burdening the code author with excessive
 complexity. Indeed, some security attacks are merely exploits of
 this kind of overly built security, which tends to erode over time.

 A phrase worth remembering: A system is only as good as the weakest
 link in a chain. If all transactions are heavily logged based on
 time, location, transaction type, etc. but the user is only
 verified based on a single cookie, the validity of tying the users
 to the transaction log is severely weakened.

 When testing, keep in mind that you will not be able to test all
 possibilities for even the simplest of pages. The input you
 may expect will be completely unrelated to the input given by
 a disgruntled employee, a cracker with months of time on their
 hands, or a housecat walking across the keyboard. This is why it's
 best to look at the code from a logical perspective, to discern
 where unexpected data can be introduced, and then follow how it is
 modified, reduced, or amplified.

 The Internet is filled with people trying to make a name for
 themselves by breaking your code, crashing your site, posting
 inappropriate content, and otherwise making your day interesting.
 It doesn't matter if you have a small or large site, you are
 a target by simply being online, by having a server that can be
 connected to. Many cracking programs do not discern by size, they
 simply trawl massive IP blocks looking for victims. Try not to
 become one.

 Installed as CGI binary

 Installed as CGI binary

Table of Contents
	Possible attacks
	Case 1: only public files served
	Case 2: using cgi.force_redirect
	Case 3: setting doc_root or user_dir
	Case 4: PHP parser outside of web tree

 Possible attacks

 Possible attacks

 Using PHP as a CGI binary is an option for
 setups that for some reason do not wish to integrate PHP as a
 module into server software (like Apache), or will use PHP with
 different kinds of CGI wrappers to create safe chroot and setuid
 environments for scripts. This setup usually involves installing
 executable PHP binary to the web server cgi-bin directory. CERT
 advisory CA-96.11 recommends
 against placing any interpreters into cgi-bin. Even if the PHP
 binary can be used as a standalone interpreter, PHP is designed
 to prevent the attacks this setup makes possible:

 	

 Accessing system files: http://my.host/cgi-bin/php?/etc/passwd

 The query information in a URL after the question mark (?) is
 passed as command line arguments to the interpreter by the CGI
 interface. Usually interpreters open and execute the file
 specified as the first argument on the command line.

 When invoked as a CGI binary, PHP refuses to interpret the
 command line arguments.

 	

 Accessing any web document on server: http://my.host/cgi-bin/php/secret/doc.html

 The path information part of the URL after the PHP binary name,
 /secret/doc.html is
 conventionally used to specify the name of the file to be
 opened and interpreted by the CGI program.
 Usually some web server configuration directives (Apache:
 Action) are used to redirect requests to documents like
 http://my.host/secret/script.php to the
 PHP interpreter. With this setup, the web server first checks
 the access permissions to the directory /secret, and after that creates the
 redirected request http://my.host/cgi-bin/php/secret/script.php.
 Unfortunately, if the request is originally given in this form,
 no access checks are made by web server for file /secret/script.php, but only for the
 /cgi-bin/php file. This way
 any user able to access /cgi-bin/php is able to access any
 protected document on the web server.

 In PHP, runtime configuration directives cgi.force_redirect, doc_root and user_dir can be used to prevent
 this attack, if the server document tree has any directories
 with access restrictions. See below for full the explanation
 of the different combinations.

 Case 1: only public files served

 Case 1: only public files served

 If your server does not have any content that is not restricted
 by password or ip based access control, there is no need for
 these configuration options. If your web server does not allow
 you to do redirects, or the server does not have a way to
 communicate to the PHP binary that the request is a safely
 redirected request, you can enable the
 cgi.force_redirect
 ini directive. You still have to make sure your PHP
 scripts do not rely on one or another way of calling the script,
 neither by directly http://my.host/cgi-bin/php/dir/script.php
 nor by redirection http://my.host/dir/script.php.

 Redirection can be configured in Apache by using AddHandler and
 Action directives (see below).

 Case 2: using cgi.force_redirect

 Case 2: using cgi.force_redirect

 The configuration directive cgi.force_redirect
 prevents anyone from calling PHP
 directly with a URL like http://my.host/cgi-bin/php/secretdir/script.php.
 Instead, PHP will only parse in this mode if it has gone through
 a web server redirect rule.

 Usually the redirection in the Apache configuration is done with
 the following directives:

Action php-script /cgi-bin/php
AddHandler php-script .php

 This option has only been tested with the Apache web server, and
 relies on Apache to set the non-standard CGI environment variable
 REDIRECT_STATUS on redirected requests. If your
 web server does not support any way of telling if the request is
 direct or redirected, you cannot use this option and you must use
 one of the other ways of running the CGI version documented
 here.

 Case 3: setting doc_root or user_dir

 Case 3: setting doc_root or user_dir

 To include active content, like scripts and executables, in the
 web server document directories is sometimes considered an insecure
 practice. If, because of some configuration mistake, the scripts
 are not executed but displayed as regular HTML documents, this
 may result in leakage of intellectual property or security
 information like passwords. Therefore many sysadmins will prefer
 setting up another directory structure for scripts that are
 accessible only through the PHP CGI, and therefore always
 interpreted and not displayed as such.

 Also if the method for making sure the requests are not
 redirected, as described in the previous section, is not
 available, it is necessary to set up a script doc_root that is
 different from web document root.

 You can set the PHP script document root by the configuration
 directive doc_root in the
 configuration file, or
 you can set the environment variable
 PHP_DOCUMENT_ROOT. If it is set, the CGI
 version of PHP will always construct the file name to open with this
 doc_root and the path information in the
 request, so you can be sure no script is executed outside this
 directory (except for user_dir
 below).

 Another option usable here is user_dir. When user_dir is unset,
 only thing controlling the opened file name is
 doc_root. Opening a URL like http://my.host/~user/doc.php does not
 result in opening a file under users home directory, but a file
 called ~user/doc.php under
 doc_root (yes, a directory name starting with a tilde
 [~]).

 If user_dir is set to for example public_php, a request like http://my.host/~user/doc.php will open a
 file called doc.php under the directory
 named public_php under the home
 directory of the user. If the home of the user is /home/user, the file executed is
 /home/user/public_php/doc.php.

 user_dir expansion happens regardless of
 the doc_root setting, so you can control
 the document root and user directory access
 separately.

 Case 4: PHP parser outside of web tree

 Case 4: PHP parser outside of web tree

 A very secure option is to put the PHP parser binary somewhere
 outside of the web tree of files. In /usr/local/bin, for example. The only real
 downside to this option is that you will now have to put a line
 similar to:

#!/usr/local/bin/php

 as the first line of any file containing PHP tags. You will also
 need to make the file executable. That is, treat it exactly as
 you would treat any other CGI script written in Perl or sh or any
 other common scripting language which uses the
 #! shell-escape mechanism for launching
 itself.

 To get PHP to handle PATH_INFO and
 PATH_TRANSLATED information correctly with this
 setup, the cgi.discard_path
 ini directive has to be enabled.

 Installed as an Apache module

 Installed as an Apache module

 When PHP is used as an Apache module it inherits Apache's user
 permissions (typically those of the "nobody" user). This has several
 impacts on security and authorization. For example, if you are using
 PHP to access a database, unless that database has built-in access
 control, you will have to make the database accessible to the
 "nobody" user. This means a malicious script could access and modify
 the database, even without a username and password. It's entirely
 possible that a web spider could stumble across a database
 administrator's web page, and drop all of your databases. You can
 protect against this with Apache authorization, or you can design
 your own access model using LDAP, .htaccess files, etc. and include
 that code as part of your PHP scripts.

 Often, once security is established to the point where the PHP user
 (in this case, the apache user) has very little risk attached to it,
 it is discovered that PHP is now prevented from writing any files
 to user directories. Or perhaps it has been prevented from accessing
 or changing databases. It has equally been secured from writing
 good and bad files, or entering good and bad database transactions.

 A frequent security mistake made at this point is to allow apache
 root permissions, or to escalate apache's abilities in some other
 way.

 Escalating the Apache user's permissions to root is extremely
 dangerous and may compromise the entire system, so sudo'ing,
 chroot'ing, or otherwise running as root should not be considered by
 those who are not security professionals.

 There are some simpler solutions. By using
 open_basedir you can control and restrict what
 directories are allowed to be used for PHP. You can also set up
 apache-only areas, to restrict all web based activity to non-user,
 or non-system, files.

 Session Security

 Session Security

 It is important keeping HTTP session management secure. Session
 related security is described in
 Session Security section
 of Session module reference.

 Filesystem Security

 Filesystem Security

Table of Contents
	Null bytes related issues

 PHP is subject to the security built into most server systems with
 respect to permissions on a file and directory basis. This allows
 you to control which files in the filesystem may be read. Care
 should be taken with any files which are world readable to ensure
 that they are safe for reading by all users who have access to that
 filesystem.

 Since PHP was designed to allow user level access to the filesystem,
 it's entirely possible to write a PHP script that will allow you
 to read system files such as /etc/passwd, modify your ethernet
 connections, send massive printer jobs out, etc. This has some
 obvious implications, in that you need to ensure that the files
 that you read from and write to are the appropriate ones.

 Consider the following script, where a user indicates that they'd
 like to delete a file in their home directory. This assumes a
 situation where a PHP web interface is regularly used for file
 management, so the Apache user is allowed to delete files in
 the user home directories.

 Example #1 Poor variable checking leads to....

<?php
// remove a file from the user's home directory
$username = $_POST['user_submitted_name'];
$userfile = $_POST['user_submitted_filename'];
$homedir = "/home/$username";

unlink("$homedir/$userfile");

echo "The file has been deleted!";
?>

 Since the username and the filename are postable from a user form,
 they can submit a username and a filename belonging to someone else,
 and delete it even if they're not supposed to be allowed to do so.
 In this case, you'd want to use some other form of authentication.
 Consider what could happen if the variables submitted were
 "../etc/" and "passwd". The code would then effectively read:

 Example #2 ... A filesystem attack

<?php
// removes a file from anywhere on the hard drive that
// the PHP user has access to. If PHP has root access:
$username = $_POST['user_submitted_name']; // "../etc"
$userfile = $_POST['user_submitted_filename']; // "passwd"
$homedir = "/home/$username"; // "/home/../etc"

unlink("$homedir/$userfile"); // "/home/../etc/passwd"

echo "The file has been deleted!";
?>

 There are two important measures you should take to prevent these
 issues.

 	

 Only allow limited permissions to the PHP web user binary.

 	

 Check all variables which are submitted.

 Here is an improved script:

 Example #3 More secure file name checking

<?php
// removes a file from the hard drive that
// the PHP user has access to.
$username = $_SERVER['REMOTE_USER']; // using an authentication mechanism
$userfile = basename($_POST['user_submitted_filename']);
$homedir = "/home/$username";

$filepath = "$homedir/$userfile";

if (file_exists($filepath) && unlink($filepath)) {
 $logstring = "Deleted $filepath\n";
} else {
 $logstring = "Failed to delete $filepath\n";
}
$fp = fopen("/home/logging/filedelete.log", "a");
fwrite($fp, $logstring);
fclose($fp);

echo htmlentities($logstring, ENT_QUOTES);

?>

 However, even this is not without its flaws. If your authentication
 system allowed users to create their own user logins, and a user
 chose the login "../etc/", the system is once again exposed. For
 this reason, you may prefer to write a more customized check:

 Example #4 More secure file name checking

<?php
$username = $_SERVER['REMOTE_USER']; // using an authentication mechanisim
$userfile = $_POST['user_submitted_filename'];
$homedir = "/home/$username";

$filepath = "$homedir/$userfile";

if (!ctype_alnum($username) || !preg_match('/^(?:[a-z0-9_-]|\.(?!\.))+$/iD', $userfile)) {
 die("Bad username/filename");
}

//etc...
?>

 Depending on your operating system, there are a wide variety of files
 which you should be concerned about, including device entries (/dev/
 or COM1), configuration files (/etc/ files and the .ini files),
 well known file storage areas (/home/, My Documents), etc. For this
 reason, it's usually easier to create a policy where you forbid
 everything except for what you explicitly allow.

 Null bytes related issues

 Null bytes related issues

 As PHP uses the underlying C functions for filesystem related
 operations, it may handle null bytes in a quite unexpected way.
 As null bytes denote the end of a string in C, strings containing them
 won't be considered entirely but rather only until a null byte occurs.

 The following example shows a vulnerable code that demonstrates this problem:

 Example #1 Script vulnerable to null bytes

<?php
$file = $_GET['file']; // "../../etc/passwd\0"
if (file_exists('/home/wwwrun/'.$file.'.php')) {
 // file_exists will return true as the file /home/wwwrun/../../etc/passwd exists
 include '/home/wwwrun/'.$file.'.php';
 // the file /etc/passwd will be included
}
?>

 Therefore, any tainted string that is used in a filesystem operation should always
 be validated properly. Here is a better version of the previous example:

 Example #2 Correctly validating the input

<?php
$file = $_GET['file'];

// Whitelisting possible values
switch ($file) {
 case 'main':
 case 'foo':
 case 'bar':
 include '/home/wwwrun/include/'.$file.'.php';
 break;
 default:
 include '/home/wwwrun/include/main.php';
}
?>

 Database Security

 Database Security

Table of Contents
	Designing Databases
	Connecting to Database
	Encrypted Storage Model
	SQL Injection

 Nowadays, databases are cardinal components of any web based application by
 enabling websites to provide varying dynamic content. Since very sensitive
 or secret information can be stored in a database, you should strongly
 consider protecting your databases.

 To retrieve or to store any information you need to connect to the database,
 send a legitimate query, fetch the result, and close the connection.
 Nowadays, the commonly used query language in this interaction is the
 Structured Query Language (SQL). See how an attacker can tamper with an SQL query.

 As you can surmise, PHP cannot protect your database by itself. The
 following sections aim to be an introduction into the very basics of how to
 access and manipulate databases within PHP scripts.

 Keep in mind this simple rule: defense in depth. The more places you
 take action to increase the protection of your database, the less
 probability of an attacker succeeding in exposing or abusing any stored
 information. Good design of the database schema and the application
 deals with your greatest fears.

 Designing Databases

 Designing Databases

 The first step is always to create the database, unless you want to use
 one from a third party. When a database is created, it is
 assigned to an owner, who executed the creation statement. Usually, only
 the owner (or a superuser) can do anything with the objects in that
 database, and in order to allow other users to use it, privileges must be
 granted.

 Applications should never connect to the database as its owner or a
 superuser, because these users can execute any query at will, for
 example, modifying the schema (e.g. dropping tables) or deleting its
 entire content.

 You may create different database users for every aspect of your
 application with very limited rights to database objects. The most
 required privileges should be granted only, and avoid that the same user
 can interact with the database in different use cases. This means that if
 intruders gain access to your database using your applications credentials,
 they can only effect as many changes as your application can.

 Connecting to Database

 Connecting to Database

 You may want to establish the connections over SSL to encrypt
 client/server communications for increased security, or you can use ssh
 to encrypt the network connection between clients and the database server.
 If either of these is used, then monitoring your traffic and gaining
 information about your database will be difficult for a would-be attacker.

 Encrypted Storage Model

 Encrypted Storage Model

 SSL/SSH protects data travelling from the client to the server: SSL/SSH
 does not protect persistent data stored in a database. SSL is an
 on-the-wire protocol.

 Once an attacker gains access to your database directly (bypassing the
 webserver), stored sensitive data may be exposed or misused, unless
 the information is protected by the database itself. Encrypting the data
 is a good way to mitigate this threat, but very few databases offer this
 type of data encryption.

 The easiest way to work around this problem is to first create your own
 encryption package, and then use it from within your PHP scripts. PHP
 can assist you in this with several extensions, such as OpenSSL and Sodium, covering a wide variety of encryption
 algorithms. The script encrypts the data before inserting it into the database, and decrypts
 it when retrieving. See the references for further examples of how
 encryption works.

 Hashing

 In the case of truly hidden data, if its raw representation is not needed
 (i.e. will not be displayed), hashing should be taken into consideration.
 The well-known example for hashing is storing the cryptographic hash of a
 password in a database, instead of the password itself.

 The password functions
 provide a convenient way to hash sensitive data and work with these hashes.

 password_hash() is used to hash a given string using the
 strongest algorithm currently available and password_verify()
 checks whether the given password matches the hash stored in database.

 Example #1 Hashing password field

<?php

// storing password hash
$query = sprintf("INSERT INTO users(name,pwd) VALUES('%s','%s');",
 pg_escape_string($username),
 password_hash($password, PASSWORD_DEFAULT));
$result = pg_query($connection, $query);

// querying if user submitted the right password
$query = sprintf("SELECT pwd FROM users WHERE name='%s';",
 pg_escape_string($username));
$row = pg_fetch_assoc(pg_query($connection, $query));

if ($row && password_verify($password, $row['pwd'])) {
 echo 'Welcome, ' . htmlspecialchars($username) . '!';
} else {
 echo 'Authentication failed for ' . htmlspecialchars($username) . '.';
}

?>

 SQL Injection

 SQL Injection

 SQL injection is a technique where an attacker exploits flaws in
 application code responsible for building dynamic SQL queries.
 The attacker can gain access to privileged sections of the application,
 retrieve all information from the database, tamper with existing data,
 or even execute dangerous system-level commands on the database
 host. The vulnerability occurs when developers concatenate or
 interpolate arbitrary input in their SQL statements.

 Example #1
 Splitting the result set into pages ... and making superusers
 (PostgreSQL)

 In the following example, user input is directly interpolated into the
 SQL query allowing the attacker to gain a superuser account in the database.

<?php

$offset = $_GET['offset']; // beware, no input validation!
$query = "SELECT id, name FROM products ORDER BY name LIMIT 20 OFFSET $offset;";
$result = pg_query($conn, $query);

?>

 Normal users click on the 'next', 'prev' links where the $offset
 is encoded into the URL. The script expects that the incoming
 $offset is a number. However, what if someone tries to
 break in by appending the following to the URL

0;
insert into pg_shadow(usename,usesysid,usesuper,usecatupd,passwd)
 select 'crack', usesysid, 't','t','crack'
 from pg_shadow where usename='postgres';
--

 If it happened, the script would present a superuser access to the attacker.
 Note that 0; is to supply a valid offset to the
 original query and to terminate it.

 Note:

 It is a common technique to force the SQL parser to ignore the rest of the
 query written by the developer with -- which is the
 comment sign in SQL.

 A feasible way to gain passwords is to circumvent your search result pages.
 The only thing the attacker needs to do is to see if there are any submitted variables
 used in SQL statements which are not handled properly. These filters can be set
 commonly in a preceding form to customize WHERE, ORDER BY,
 LIMIT and OFFSET clauses in SELECT
 statements. If your database supports the UNION construct,
 the attacker may try to append an entire query to the original one to list
 passwords from an arbitrary table. It is strongly recommended to store only
 secure hashes of passwords instead of the passwords themselves.

 Example #2
 Listing out articles ... and some passwords (any database server)

<?php

$query = "SELECT id, name, inserted, size FROM products
 WHERE size = '$size'";
$result = odbc_exec($conn, $query);

?>

 The static part of the query can be combined with another
 SELECT statement which reveals all passwords:

'
union select '1', concat(uname||'-'||passwd) as name, '1971-01-01', '0' from usertable;
--

 UPDATE and INSERT statements are also
 susceptible to such attacks.

 Example #3
 From resetting a password ... to gaining more privileges (any database server)

<?php
$query = "UPDATE usertable SET pwd='$pwd' WHERE uid='$uid';";
?>

 If a malicious user submits the value
 ' or uid like'%admin% to $uid to
 change the admin's password, or simply sets $pwd to
 hehehe', trusted=100, admin='yes to gain more
 privileges, then the query will be twisted:

<?php

// $uid: ' or uid like '%admin%
$query = "UPDATE usertable SET pwd='...' WHERE uid='' or uid like '%admin%';";

// $pwd: hehehe', trusted=100, admin='yes
$query = "UPDATE usertable SET pwd='hehehe', trusted=100, admin='yes' WHERE
...;";

?>

 While it remains obvious that an attacker must possess at least some
 knowledge of the database architecture to conduct a successful
 attack, obtaining this information is often very simple. For example,
 the code may be part of an open-source software and be publicly available.
 This information may also be divulged
 by closed-source code - even if it's encoded, obfuscated, or compiled -
 and even by your own code through the display of error messages.
 Other methods include the use of typical table and column names. For
 example, a login form that uses a 'users' table with column names
 'id', 'username', and 'password'.

 Example #4 Attacking the database host operating system (MSSQL Server)

 A frightening example of how operating system-level commands can be
 accessed on some database hosts.

<?php

$query = "SELECT * FROM products WHERE id LIKE '%$prod%'";
$result = mssql_query($query);

?>

 If attacker submits the value
 a%' exec master..xp_cmdshell 'net user test testpass /ADD' --
 to $prod, then the $query will be:

<?php

$query = "SELECT * FROM products
 WHERE id LIKE '%a%'
 exec master..xp_cmdshell 'net user test testpass /ADD' --%'";
$result = mssql_query($query);

?>

 MSSQL Server executes the SQL statements in the batch including a command
 to add a new user to the local accounts database. If this application
 were running as sa and the MSSQLSERVER service was
 running with sufficient privileges, the attacker would now have an
 account with which to access this machine.

 Note:

 Some examples above are tied to a specific database server, but it
 does not mean that a similar attack is impossible against other products.
 Your database server may be similarly vulnerable in another manner.

 [image: A funny example of the issues regarding SQL injection]

 Image courtesy of xkcd

 Avoidance Techniques

 The recommended way to avoid SQL injection is by binding all data via
 prepared statements. Using parameterized queries isn't enough to entirely
 avoid SQL injection, but it is the easiest and safest way to provide input
 to SQL statements. All dynamic data literals in WHERE,
 SET, and VALUES clauses must be
 replaced with placeholders. The actual data will be bound during the
 execution and sent separately from the SQL command.

 Parameter binding can only be used for data. Other dynamic parts of the
 SQL query must be filtered against a known list of allowed values.

 Example #5 Avoiding SQL injection by using PDO prepared statements

<?php

// The dynamic SQL part is validated against expected values
$sortingOrder = $_GET['sortingOrder'] === 'DESC' ? 'DESC' : 'ASC';
$productId = $_GET['productId'];
// The SQL is prepared with a placeholder
$stmt = $pdo->prepare("SELECT * FROM products WHERE id LIKE ? ORDER BY price {$sortingOrder}");
// The value is provided with LIKE wildcards
$stmt->execute(["%{$productId}%"]);

?>

 Prepared statements are provided
 by PDO,
 by MySQLi,
 and by other database libraries.

 SQL injection attacks are mainly based on exploiting the code not being written
 with security in mind. Never trust any input, especially
 from the client side, even though it comes from a select box,
 a hidden input field, or a cookie. The first example shows that such a
 simple query can cause disasters.

 A defense-in-depth strategy involves several good coding practices:

 	

 Never connect to the database as a superuser or as the database owner.
 Use always customized users with minimal privileges.

 	

 Check if the given input has the expected data type. PHP has
 a wide range of input validating functions, from the simplest ones
 found in Variable Functions and
 in Character Type Functions
 (e.g. is_numeric(), ctype_digit()
 respectively) and onwards to the
 Perl Compatible Regular Expressions
 support.

 	

 If the application expects numerical input, consider verifying data
 with ctype_digit(), silently change its type
 using settype(), or use its numeric representation
 by sprintf().

 	

 If the database layer doesn't support binding variables then
 quote each non-numeric user-supplied value that is passed to the
 database with the database-specific string escape function (e.g.
 mysql_real_escape_string(),
 sqlite_escape_string(), etc.).
 Generic functions like addslashes() are useful only
 in a very specific environment (e.g. MySQL in a single-byte character
 set with disabled NO_BACKSLASH_ESCAPES), so it is
 better to avoid them.

 	

 Do not print out any database-specific information, especially
 about the schema, by fair means or foul. See also Error Reporting and Error Handling and Logging Functions.

 Besides these, you benefit from logging queries either within your script
 or by the database itself, if it supports logging. Obviously, the logging is unable
 to prevent any harmful attempt, but it can be helpful to trace back which
 application has been circumvented. The log is not useful by itself but
 through the information it contains. More detail is generally better than less.

 Error Reporting

 Error Reporting

 With PHP security, there are two sides to error reporting. One is
 beneficial to increasing security, the other is detrimental.

 A standard attack tactic involves profiling a system by feeding
 it improper data, and checking for the kinds, and contexts, of the
 errors which are returned. This allows the system cracker to probe
 for information about the server, to determine possible weaknesses.
 For example, if an attacker had gleaned information about a page
 based on a prior form submission, they may attempt to override
 variables, or modify them:

 Example #1 Attacking Variables with a custom HTML page

<form method="post" action="attacktarget?username=badfoo&password=badfoo">
<input type="hidden" name="username" value="badfoo" />
<input type="hidden" name="password" value="badfoo" />
</form>

 The PHP errors which are normally returned can be quite helpful to a
 developer who is trying to debug a script, indicating such things
 as the function or file that failed, the PHP file it failed in,
 and the line number which the failure occurred in. This is all
 information that can be exploited. It is not uncommon for a php
 developer to use show_source(),
 highlight_string(), or
 highlight_file() as a debugging measure, but in
 a live site, this can expose hidden variables, unchecked syntax,
 and other dangerous information. Especially dangerous is running
 code from known sources with built-in debugging handlers, or using
 common debugging techniques. If the attacker can determine what
 general technique you are using, they may try to brute-force a page,
 by sending various common debugging strings:

 Example #2 Exploiting common debugging variables

<form method="post" action="attacktarget?errors=Y&showerrors=1&debug=1">
<input type="hidden" name="errors" value="Y" />
<input type="hidden" name="showerrors" value="1" />
<input type="hidden" name="debug" value="1" />
</form>

 Regardless of the method of error handling, the ability to probe a
 system for errors leads to providing an attacker with more
 information.

 For example, the very style of a generic PHP error indicates a system
 is running PHP. If the attacker was looking at an .html page, and
 wanted to probe for the back-end (to look for known weaknesses in
 the system), by feeding it the wrong data they may be able to
 determine that a system was built with PHP.

 A function error can indicate whether a system may be running a
 specific database engine, or give clues as to how a web page or
 programmed or designed. This allows for deeper investigation into
 open database ports, or to look for specific bugs or weaknesses
 in a web page. By feeding different pieces of bad data, for example,
 an attacker can determine the order of authentication in a script,
 (from the line number errors) as well as probe for exploits that
 may be exploited in different locations in the script.

 A filesystem or general PHP error can indicate what permissions
 the web server has, as well as the structure and organization of
 files on the web server. Developer written error code can aggravate
 this problem, leading to easy exploitation of formerly "hidden"
 information.

 There are three major solutions to this issue. The first is to
 scrutinize all functions, and attempt to compensate for the bulk
 of the errors. The second is to disable error reporting entirely
 on the running code. The third is to use PHP's custom error
 handling functions to create your own error handler. Depending
 on your security policy, you may find all three to be applicable
 to your situation.

 One way of catching this issue ahead of time is to make use of
 PHP's own error_reporting(), to help you
 secure your code and find variable usage that may be dangerous.
 By testing your code, prior to deployment, with E_ALL,
 you can quickly find areas where your variables may be open to poisoning
 or modification in other ways. Once you are ready for deployment,
 you should either disable error reporting completely by setting
 error_reporting() to 0, or turn off the error
 display using the php.ini option display_errors,
 to insulate your code from probing. If you choose to do the latter,
 you should also define the path to your log file using the
 error_log ini directive, and turn
 log_errors on.

 Example #3 Finding dangerous variables with E_ALL

<?php
if ($username) { // Not initialized or checked before usage
 $good_login = 1;
}
if ($good_login == 1) { // If above test fails, not initialized or checked before usage
 readfile ("/highly/sensitive/data/index.html");
}
?>

 User Submitted Data

 User Submitted Data

 The greatest weakness in many PHP programs is not inherent in the
 language itself, but merely an issue of code not being written with
 security in mind. For this reason, you should always take the time
 to consider the implications of a given piece of code, to ascertain
 the possible damage if an unexpected variable is submitted to it.

 Example #1 Dangerous Variable Usage

<?php
// remove a file from the user's home directory... or maybe
// somebody else's?
unlink ($evil_var);

// Write logging of their access... or maybe an /etc/passwd entry?
fwrite ($fp, $evil_var);

// Execute something trivial.. or rm -rf *?
system ($evil_var);
exec ($evil_var);

?>

 You should always carefully examine your code to make sure that any
 variables being submitted from a web browser are being properly
 checked, and ask yourself the following questions:

 	

 Will this script only affect the intended files?

 	

 Can unusual or undesirable data be acted upon?

 	

 Can this script be used in unintended ways?

 	

 Can this be used in conjunction with other scripts in a negative
 manner?

 	

 Will any transactions be adequately logged?

 By adequately asking these questions while writing the script,
 rather than later, you prevent an unfortunate re-write when you
 need to increase your security. By starting out with this mindset,
 you won't guarantee the security of your system, but you can help
 improve it.

 You may also want to consider turning off register_globals,
 magic_quotes, or other convenience settings which may confuse
 you as to the validity, source, or value of a given variable.
 Working with PHP in error_reporting(E_ALL) mode can also help warn
 you about variables being used before they are checked or
 initialized (so you can prevent unusual data from being
 operated upon).

 Hiding PHP

 Hiding PHP

 In general, security by obscurity is one of the weakest forms of security.
 But in some cases, every little bit of extra security is desirable.

 A few simple techniques can help to hide PHP, possibly slowing
 down an attacker who is attempting to discover weaknesses in your
 system. By setting expose_php to off in your
 php.ini file, you reduce the amount of information available to them.

 Another tactic is to configure web servers such as apache to
 parse different filetypes through PHP, either with an .htaccess
 directive, or in the apache configuration file itself. You can
 then use misleading file extensions:

 Example #1 Hiding PHP as another language

Make PHP code look like other code types
AddType application/x-httpd-php .asp .py .pl

 Or obscure it completely:

 Example #2 Using unknown types for PHP extensions

Make PHP code look like unknown types
AddType application/x-httpd-php .bop .foo .133t

 Or hide it as HTML code, which has a slight performance hit because
 all HTML will be parsed through the PHP engine:

 Example #3 Using HTML types for PHP extensions

Make all PHP code look like HTML
AddType application/x-httpd-php .htm .html

 For this to work effectively, you must rename your PHP files with
 the above extensions. While it is a form of security through
 obscurity, it's a minor preventative measure with few drawbacks.

 Keeping Current

 Keeping Current

 PHP, like any other large system, is under constant scrutiny and
 improvement. Each new version will often include both major and
 minor changes to enhance security and repair any flaws, configuration
 mishaps, and other issues that will affect the overall security
 and stability of your system.

 Like other system-level scripting languages and programs, the best
 approach is to update often, and maintain awareness of the latest
 versions and their changes.

 Features

 Features

 	HTTP authentication with PHP
	Cookies
	Sessions
	Dealing with XForms
	Handling file uploads	POST method uploads
	Error Messages Explained
	Common Pitfalls
	Uploading multiple files
	PUT method support
	See Also

	Using remote files
	Connection handling
	Persistent Database Connections
	Command line usage — Using PHP from the command line	Differences to other SAPIs
	Options — Command line options
	Usage — Executing PHP files
	I/O streams — Input/output streams
	Interactive shell
	Built-in web server
	INI settings

	Garbage Collection	Reference Counting Basics
	Collecting Cycles
	Performance Considerations

	DTrace Dynamic Tracing	Introduction to PHP and DTrace
	Using PHP and DTrace
	Using SystemTap with PHP DTrace Static Probes

 HTTP authentication with PHP

 HTTP authentication with PHP

 It is possible to use the
 header() function to send an "Authentication Required"
 message to the client browser causing it to pop up a Username/Password
 input window. Once the user has filled in a username and a password,
 the URL containing the PHP script will be called again with the
 predefined variables
 PHP_AUTH_USER, PHP_AUTH_PW,
 and AUTH_TYPE set to the user name, password and
 authentication type respectively. These predefined variables are found
 in the $_SERVER array. Only "Basic" and "Digest"
 authentication methods are supported. See the
 header() function for more information.

 An example script fragment which would force client authentication
 on a page is as follows:

 Example #1 Basic HTTP Authentication example

<?php
if (!isset($_SERVER['PHP_AUTH_USER'])) {
 header('WWW-Authenticate: Basic realm="My Realm"');
 header('HTTP/1.0 401 Unauthorized');
 echo 'Text to send if user hits Cancel button';
 exit;
} else {
 echo "<p>Hello {$_SERVER['PHP_AUTH_USER']}.</p>";
 echo "<p>You entered {$_SERVER['PHP_AUTH_PW']} as your password.</p>";
}
?>

 Example #2 Digest HTTP Authentication example

 This example shows you how to implement a simple Digest HTTP
 authentication script. For more information read the RFC 2617.

<?php
$realm = 'Restricted area';

//user => password
$users = array('admin' => 'mypass', 'guest' => 'guest');

if (empty($_SERVER['PHP_AUTH_DIGEST'])) {
 header('HTTP/1.1 401 Unauthorized');
 header('WWW-Authenticate: Digest realm="'.$realm.
 '",qop="auth",nonce="'.uniqid().'",opaque="'.md5($realm).'"');

 die('Text to send if user hits Cancel button');
}

// analyze the PHP_AUTH_DIGEST variable
if (!($data = http_digest_parse($_SERVER['PHP_AUTH_DIGEST'])) ||
 !isset($users[$data['username']]))
 die('Wrong Credentials!');

// generate the valid response
$A1 = md5($data['username'] . ':' . $realm . ':' . $users[$data['username']]);
$A2 = md5($_SERVER['REQUEST_METHOD'].':'.$data['uri']);
$valid_response = md5($A1.':'.$data['nonce'].':'.$data['nc'].':'.$data['cnonce'].':'.$data['qop'].':'.$A2);

if ($data['response'] != $valid_response)
 die('Wrong Credentials!');

// ok, valid username & password
echo 'You are logged in as: ' . $data['username'];

// function to parse the http auth header
function http_digest_parse($txt)
{
 // protect against missing data
 $needed_parts = array('nonce'=>1, 'nc'=>1, 'cnonce'=>1, 'qop'=>1, 'username'=>1, 'uri'=>1, 'response'=>1);
 $data = array();
 $keys = implode('|', array_keys($needed_parts));

 preg_match_all('@(' . $keys . ')=(?:([\'"])([^\2]+?)\2|([^\s,]+))@', $txt, $matches, PREG_SET_ORDER);

 foreach ($matches as $m) {
 $data[$m[1]] = $m[3] ? $m[3] : $m[4];
 unset($needed_parts[$m[1]]);
 }

 return $needed_parts ? false : $data;
}
?>

 Note:
 Compatibility Note

 Please be careful when coding the HTTP header lines. In order to guarantee maximum
 compatibility with all clients, the keyword "Basic" should be written with an
 uppercase "B", the realm string must be enclosed in double (not single) quotes,
 and exactly one space should precede the 401 code in the
 HTTP/1.0 401 header line. Authentication parameters have
 to be comma-separated as seen in the digest example above.

 Instead of simply printing out PHP_AUTH_USER
 and PHP_AUTH_PW, as done in the above example,
 you may want to check the username and password for validity.
 Perhaps by sending a query to a database, or by looking up the
 user in a dbm file.

 Watch out for buggy Internet Explorer browsers out there. They
 seem very picky about the order of the headers. Sending the
 WWW-Authenticate header before the
 HTTP/1.0 401 header seems to do the trick
 for now.

 Note:
 Configuration Note

 PHP uses the presence of an AuthType directive
 to determine whether external authentication is in effect.

 Note, however, that the above does not prevent someone who
 controls a non-authenticated URL from stealing passwords from
 authenticated URLs on the same server.

 Both Netscape Navigator and Internet Explorer will clear the local browser
 window's authentication cache for the realm upon receiving a
 server response of 401. This can effectively "log out" a user,
 forcing them to re-enter their username and password. Some people
 use this to "time out" logins, or provide a "log-out" button.

 Example #3 HTTP Authentication example forcing a new name/password

<?php
function authenticate() {
 header('WWW-Authenticate: Basic realm="Test Authentication System"');
 header('HTTP/1.0 401 Unauthorized');
 echo "You must enter a valid login ID and password to access this resource\n";
 exit;
}

if (!isset($_SERVER['PHP_AUTH_USER']) ||
 ($_POST['SeenBefore'] == 1 && $_POST['OldAuth'] == $_SERVER['PHP_AUTH_USER'])) {
 authenticate();
} else {
 echo "<p>Welcome: " . htmlspecialchars($_SERVER['PHP_AUTH_USER']) . "
";
 echo "Old: " . htmlspecialchars($_REQUEST['OldAuth']);
 echo "<form action='' method='post'>\n";
 echo "<input type='hidden' name='SeenBefore' value='1' />\n";
 echo "<input type='hidden' name='OldAuth' value=\"" . htmlspecialchars($_SERVER['PHP_AUTH_USER']) . "\" />\n";
 echo "<input type='submit' value='Re Authenticate' />\n";
 echo "</form></p>\n";
}
?>

 This behavior is not required by the HTTP Basic
 authentication standard, so you should never depend on this. Testing with
 Lynx has shown that Lynx does not clear
 the authentication credentials with a 401 server response, so pressing back
 and then forward again will open the resource as long as the credential
 requirements haven't changed. The user can press the
 '_' key to clear their authentication information, however.

 In order to get HTTP Authentication to work using IIS server with the CGI version
 of PHP you must edit your IIS configuration "Directory Security".
 Click on "Edit" and only check
 "Anonymous Access", all other fields
 should be left unchecked.

 Note:
 IIS Note:

 For HTTP Authentication to work with IIS, the PHP directive
 cgi.rfc2616_headers must
 be set to 0 (the default value).

 Cookies

 Cookies

 PHP transparently supports HTTP cookies. Cookies are a mechanism for
 storing data in the remote browser and thus tracking or identifying return
 users. You can set cookies using the setcookie() or
 setrawcookie()
 function. Cookies are part of the HTTP header, so
 setcookie() must be called before any output is sent to
 the browser. This is the same limitation that header()
 has. You can use the output buffering
 functions to delay the script output until you have decided whether
 or not to set any cookies or send any headers.

 Any cookies sent to server from the client will automatically be included into
 a $_COOKIE auto-global
 array if variables_order
 contains "C". If you wish to assign multiple values to a single
 cookie, just add [] to the cookie name.

 For more details, including notes on browser bugs, see the
 setcookie() and setrawcookie()
 function.

 Sessions

 Sessions

 Session support in PHP consists of a way to preserve certain data across
 subsequent accesses. This enables you to build more customized applications
 and increase the appeal of your web site. All information is in the
 Session reference section.

 Dealing with XForms

 Dealing with XForms

 XForms defines a variation on traditional
 webforms which allows them to be used on a wider variety of platforms and
 browsers or even non-traditional media such as PDF documents.

 The first key difference in XForms is how the form is sent to the client.
 XForms for HTML Authors
 contains a detailed description of how to create XForms, for the purpose
 of this tutorial we'll only be looking at a simple example.

 Example #1 A simple XForms search form

<h:html xmlns:h="http://www.w3.org/1999/xhtml"
 xmlns="http://www.w3.org/2002/xforms">
<h:head>
 <h:title>Search</h:title>
 <model>
 <submission action="http://example.com/search"
 method="post" id="s"/>
 </model>
</h:head>
<h:body>
 <h:p>
 <input ref="q"><label>Find</label></input>
 <submit submission="s"><label>Go</label></submit>
 </h:p>
</h:body>
</h:html>

 The above form displays a text input box (named q),
 and a submit button. When the submit button is clicked, the form will be
 sent to the page referred to by action.

 Here's where it starts to look different from your web application's point
 of view. In a normal HTML form, the data would be sent as
 application/x-www-form-urlencoded, in the XForms world
 however, this information is sent as XML formatted data.

 If you're choosing to work with XForms then you probably want that data as
 XML, in that case, look in $HTTP_RAW_POST_DATA where
 you'll find the XML document generated by the browser which you can pass
 into your favorite XSLT engine or document parser.

 If you're not interested in formatting and just want your data to be loaded
 into the traditional $_POST variable, you can instruct
 the client browser to send it as application/x-www-form-urlencoded
 by changing the method attribute to
 urlencoded-post.

 Example #2 Using an XForm to populate $_POST

<h:html xmlns:h="http://www.w3.org/1999/xhtml"
 xmlns="http://www.w3.org/2002/xforms">
<h:head>
 <h:title>Search</h:title>
 <model>
 <submission action="http://example.com/search"
 method="urlencoded-post" id="s"/>
 </model>
</h:head>
<h:body>
 <h:p>
 <input ref="q"><label>Find</label></input>
 <submit submission="s"><label>Go</label></submit>
 </h:p>
</h:body>
</h:html>

 Note:

 As of this writing, many browsers do not support XForms.
 Check your browser version if the above examples fails.

 Handling file uploads

 Handling file uploads

Table of Contents
	POST method uploads
	Error Messages Explained
	Common Pitfalls
	Uploading multiple files
	PUT method support
	See Also

 POST method uploads

 POST method uploads

 This feature lets people upload both text and binary files.
 With PHP's authentication and file manipulation functions,
 you have full control over who is allowed to upload and
 what is to be done with the file once it has been uploaded.

 PHP is capable of receiving file uploads from any RFC-1867
 compliant browser.

 Note:
 Related Configurations Note

 See also the file_uploads,
 upload_max_filesize,
 upload_tmp_dir,
 post_max_size and
 max_input_time directives
 in php.ini

 PHP also supports PUT-method file uploads as used by
 Netscape Composer and W3C's
 Amaya clients. See the PUT Method
 Support for more details.

 Example #1 File Upload Form

 A file upload screen can be built by creating a special form which
 looks something like this:

<!-- The data encoding type, enctype, MUST be specified as below -->
<form enctype="multipart/form-data" action="__URL__" method="POST">
 <!-- MAX_FILE_SIZE must precede the file input field -->
 <input type="hidden" name="MAX_FILE_SIZE" value="30000" />
 <!-- Name of input element determines name in $_FILES array -->
 Send this file: <input name="userfile" type="file" />
 <input type="submit" value="Send File" />
</form>

 The __URL__ in the above example should be replaced,
 and point to a PHP file.

 The MAX_FILE_SIZE hidden field (measured in bytes) must
 precede the file input field, and its value is the maximum filesize accepted by PHP.
 This form element should always be used as it saves users the trouble of
 waiting for a big file being transferred only to find that it was too
 large and the transfer failed. Keep in mind: fooling this setting on the
 browser side is quite easy, so never rely on files with a greater size
 being blocked by this feature. It is merely a convenience feature for
 users on the client side of the application. The PHP settings (on the server
 side) for maximum-size, however, cannot be fooled.

 Note:

 Be sure your file upload form has attribute enctype="multipart/form-data"
 otherwise the file upload will not work.

 The global $_FILES will contain all the uploaded file information.
 Its contents from the example form is as follows. Note that this assumes the use of
 the file upload name userfile, as used in the example
 script above. This can be any name.

 	$_FILES['userfile']['name']

 	

 The original name of the file on the client machine.

 	$_FILES['userfile']['type']

 	

 The mime type of the file, if the browser provided this
 information. An example would be
 "image/gif". This mime type is however
 not checked on the PHP side and therefore don't take its value
 for granted.

 	$_FILES['userfile']['size']

 	

 The size, in bytes, of the uploaded file.

 	$_FILES['userfile']['tmp_name']

 	

 The temporary filename of the file in which the uploaded file
 was stored on the server.

 	$_FILES['userfile']['error']

 	

 The error code
 associated with this file upload.

 	$_FILES['userfile']['full_path']

 	

 The full path as submitted by the browser. This value does not always contain a real directory structure, and cannot be trusted.
 Available as of PHP 8.1.0.

 Files will, by default be stored in the server's default temporary
 directory, unless another location has been given with the upload_tmp_dir directive in
 php.ini. The server's default directory can
 be changed by setting the environment variable
 TMPDIR in the environment in which PHP runs.
 Setting it using putenv() from within a PHP
 script will not work. This environment variable can also be used
 to make sure that other operations are working on uploaded files,
 as well.

 Example #2 Validating file uploads

 See also the function entries for is_uploaded_file()
 and move_uploaded_file() for further information. The
 following example will process the file upload that came from a form.

<?php
$uploaddir = '/var/www/uploads/';
$uploadfile = $uploaddir . basename($_FILES['userfile']['name']);

echo '<pre>';
if (move_uploaded_file($_FILES['userfile']['tmp_name'], $uploadfile)) {
 echo "File is valid, and was successfully uploaded.\n";
} else {
 echo "Possible file upload attack!\n";
}

echo 'Here is some more debugging info:';
print_r($_FILES);

print "</pre>";

?>

 The PHP script which receives the uploaded file should implement
 whatever logic is necessary for determining what should be done
 with the uploaded file. You can, for example, use the
 $_FILES['userfile']['size'] variable
 to throw away any files that are either too small or too big. You
 could use the
 $_FILES['userfile']['type'] variable
 to throw away any files that didn't match a certain type criteria, but
 use this only as first of a series of checks, because this value
 is completely under the control of the client and not checked on the PHP
 side.
 Also, you could use $_FILES['userfile']['error']
 and plan your logic according to the error codes.
 Whatever the logic, you should either delete the file from the
 temporary directory or move it elsewhere.

 If no file is selected for upload in your form, PHP will return
 $_FILES['userfile']['size'] as 0, and
 $_FILES['userfile']['tmp_name'] as none.

 The file will be deleted from the temporary directory at the end
 of the request if it has not been moved away or renamed.

 Example #3 Uploading array of files

 PHP supports HTML array feature
 even with files.

<form action="" method="post" enctype="multipart/form-data">
<p>Pictures:
<input type="file" name="pictures[]" />
<input type="file" name="pictures[]" />
<input type="file" name="pictures[]" />
<input type="submit" value="Send" />
</p>
</form>

<?php
foreach ($_FILES["pictures"]["error"] as $key => $error) {
 if ($error == UPLOAD_ERR_OK) {
 $tmp_name = $_FILES["pictures"]["tmp_name"][$key];
 // basename() may prevent filesystem traversal attacks;
 // further validation/sanitation of the filename may be appropriate
 $name = basename($_FILES["pictures"]["name"][$key]);
 move_uploaded_file($tmp_name, "data/$name");
 }
}
?>

 File upload progress bar can be implemented using Session Upload Progress.

 Error Messages Explained

 Error Messages Explained

 PHP returns an appropriate error code along with the
 file array. The error code can be found in the
 error segment of the file array that is created
 during the file upload by PHP. In other words, the error might be
 found in $_FILES['userfile']['error'].

 	UPLOAD_ERR_OK

 	

 Value: 0; There is no error, the file uploaded with success.

 	UPLOAD_ERR_INI_SIZE

 	

 Value: 1; The uploaded file exceeds the
 upload_max_filesize
 directive in php.ini.

 	UPLOAD_ERR_FORM_SIZE

 	

 Value: 2; The uploaded file exceeds the MAX_FILE_SIZE
 directive that was specified in the HTML form.

 	UPLOAD_ERR_PARTIAL

 	

 Value: 3; The uploaded file was only partially uploaded.

 	UPLOAD_ERR_NO_FILE

 	

 Value: 4; No file was uploaded.

 	UPLOAD_ERR_NO_TMP_DIR

 	

 Value: 6; Missing a temporary folder.

 	UPLOAD_ERR_CANT_WRITE

 	

 Value: 7; Failed to write file to disk.

 	UPLOAD_ERR_EXTENSION

 	

 Value: 8; A PHP extension stopped the file upload. PHP does not
 provide a way to ascertain which extension caused the file upload to
 stop; examining the list of loaded extensions with phpinfo() may help.

 Common Pitfalls

 Common Pitfalls

 The MAX_FILE_SIZE item cannot specify a file size
 greater than the file size that has been set in the upload_max_filesize in
 the php.ini file. The default is 2 megabytes.

 If a memory limit is enabled, a larger memory_limit may be needed. Make
 sure you set memory_limit
 large enough.

 If max_execution_time
 is set too small, script execution may be exceeded by the value. Make
 sure you set max_execution_time large enough.

 Note:

 max_execution_time only
 affects the execution time of the script itself. Any time spent
 on activity that happens outside the execution of the script
 such as system calls using system(), the
 sleep() function, database queries, time taken by
 the file upload process, etc. is not included when determining the maximum
 time that the script has been running.

 Warning

 max_input_time sets the maximum
 time, in seconds, the script is allowed to receive input; this includes
 file uploads. For large or multiple files, or users on slower connections,
 the default of 60 seconds may be exceeded.

 If post_max_size is set too
 small, large files cannot be uploaded. Make sure you set
 post_max_size large enough.

 The
 max_file_uploads configuration
 setting controls the maximum number of files that can uploaded in one
 request. If more files are uploaded than the limit, then
 $_FILES will stop processing files once the limit is
 reached. For example, if
 max_file_uploads is set to
 10, then $_FILES will never contain
 more than 10 items.

 Not validating which file you operate on may mean that users can access
 sensitive information in other directories.

 Due to the large amount of directory listing styles we cannot guarantee
 that files with exotic names (like containing spaces) are handled properly.

 A developer may not mix normal input fields and file upload fields in the same
 form variable (by using an input name like foo[]).

 Uploading multiple files

 Uploading multiple files

 Multiple files can be uploaded using different
 name for input.

 It is also possible to upload multiple files simultaneously and
 have the information organized automatically in arrays for you. To
 do so, you need to use the same array submission syntax in the
 HTML form as you do with multiple selects and checkboxes:

 Example #1 Uploading multiple files

<form action="file-upload.php" method="post" enctype="multipart/form-data">
 Send these files:

 <input name="userfile[]" type="file" />

 <input name="userfile[]" type="file" />

 <input type="submit" value="Send files" />
</form>

 When the above form is submitted, the arrays
 $_FILES['userfile'],
 $_FILES['userfile']['name'], and
 $_FILES['userfile']['size'] will be
 initialized.

 For instance, assume that the filenames
 /home/test/review.html and
 /home/test/xwp.out are submitted. In this
 case, $_FILES['userfile']['name'][0]
 would contain the value review.html, and
 $_FILES['userfile']['name'][1] would
 contain the value xwp.out. Similarly,
 $_FILES['userfile']['size'][0] would
 contain review.html's file size, and so forth.

 $_FILES['userfile']['name'][0],
 $_FILES['userfile']['tmp_name'][0],
 $_FILES['userfile']['size'][0], and
 $_FILES['userfile']['type'][0] are
 also set.

 Warning

 The
 max_file_uploads
 configuration setting acts as a limit on the number of files that can be
 uploaded in one request. You will need to ensure that your form does not
 try to upload more files in one request than this limit.

 Example #2 Uploading an entire directory

 In HTML file upload fields, it is possible to upload an entire directory with the webkitdirectory attribute.
 This feature is supported in most modern browsers.

 With the full_path information, it is possible to store the relative paths,
 or reconstruct the same directory in the server.

<form action="file-upload.php" method="post" enctype="multipart/form-data">
 Send this directory:

 <input name="userfile[]" type="file" webkitdirectory multiple />
 <input type="submit" value="Send files" />
</form>

 Warning

 The webkitdirectory attribute is non-standard and is not on a standards track.
 Do not use it on production sites facing the Web: it will not work for every user.
 There may also be large incompatibilities between implementations and the behavior may change in the future.

 PHP only parses the relative path information submitted by the browser/user-agent,
 and passes that information to the $_FILES array.
 There is no guarantee that the values in the full_path array contains a real directory structure,
 and the PHP application must not trust this information.

 PUT method support

 PUT method support

 PHP provides support for the HTTP PUT method used by some clients to store
 files on a server.
 PUT requests are much simpler than a file upload using POST requests
 and they look something like this:

PUT /path/filename.html HTTP/1.1

 This would normally mean that the remote client would like to save
 the content that follows as: /path/filename.html in your web tree.
 It is obviously not a good idea for Apache or PHP to automatically
 let everybody overwrite any files in your web tree. So, to handle
 such a request you have to first tell your web server that you
 want a certain PHP script to handle the request. In Apache you do
 this with the Script directive. It can be
 placed almost anywhere in your Apache configuration file. A
 common place is inside a <Directory> block or perhaps inside
 a <VirtualHost> block. A line like this would do the trick:

Script PUT /put.php

 This tells Apache to send all PUT requests for URIs that match the
 context in which you put this line to the put.php script. This
 assumes, of course, that you have PHP enabled for the .php
 extension and PHP is active. The destination resource for all PUT
 requests to this script has to be the script itself, not a filename the
 uploaded file should have.

 With PHP you would then do something like the following in
 your put.php. This would copy the contents of the uploaded file to the
 file myputfile.ext on the server.
 You would probably want to perform some checks and/or
 authenticate the user before performing this file copy.

 Example #1 Saving HTTP PUT files

<?php
/* PUT data comes in on the stdin stream */
$putdata = fopen("php://input", "r");

/* Open a file for writing */
$fp = fopen("myputfile.ext", "w");

/* Read the data 1 KB at a time
 and write to the file */
while ($data = fread($putdata, 1024))
 fwrite($fp, $data);

/* Close the streams */
fclose($fp);
fclose($putdata);
?>

 See Also

 See Also

 	Filesystem Security

 Using remote files

 Using remote files

 As long as allow_url_fopen is enabled in
 php.ini, you can use HTTP and FTP
 URLs with most of the functions
 that take a filename as a parameter. In addition, URLs can be
 used with the include,
 include_once, require and
 require_once statements
 (allow_url_include must be enabled for these).
 See Supported Protocols and Wrappers for more information about the protocols
 supported by PHP.

 For example, you can use this to open a file on a remote web server,
 parse the output for the data you want, and then use that data in a
 database query, or simply to output it in a style matching the rest
 of your website.

 Example #1 Getting the title of a remote page

<?php
$file = fopen ("http://www.example.com/", "r");
if (!$file) {
 echo "<p>Unable to open remote file.\n";
 exit;
}
while (!feof ($file)) {
 $line = fgets ($file, 1024);
 /* This only works if the title and its tags are on one line */
 if (preg_match ("@\<title\>(.*)\</title\>@i", $line, $out)) {
 $title = $out[1];
 break;
 }
}
fclose($file);
?>

 You can also write to files on an FTP server (provided that you
 have connected as a user with the correct access rights). You
 can only create new files using this method; if you try to overwrite
 a file that already exists, the fopen() call will
 fail.

 To connect as a user other than 'anonymous', you need to specify
 the username (and possibly password) within the URL, such as
 'ftp://user:password@ftp.example.com/path/to/file'.
 (You can use the same sort of syntax to access files via
 HTTP when they require Basic authentication.)

 Example #2 Storing data on a remote server

<?php
$file = fopen ("ftp://ftp.example.com/incoming/outputfile", "w");
if (!$file) {
 echo "<p>Unable to open remote file for writing.\n";
 exit;
}
/* Write the data here. */
fwrite ($file, $_SERVER['HTTP_USER_AGENT'] . "\n");
fclose ($file);
?>

 Note:

 You might get the idea from the example above that you can use
 this technique to write to a remote log file. Unfortunately
 that would not work because the fopen() call will
 fail if the remote file already exists. To do distributed logging
 like that, you should take a look at syslog().

 Connection handling

 Connection handling

 Internally in PHP a connection status is maintained. There are 4
 possible states:

 	0 - NORMAL

 	1 - ABORTED

 	2 - TIMEOUT

 	3 - ABORTED and TIMEOUT

 When a PHP script is running normally, the NORMAL state is active.
 If the remote client disconnects, the ABORTED state flag is
 turned on. A remote client disconnect is usually caused by
 users hitting their STOP button. If the PHP-imposed time limit (see
 set_time_limit()) is hit, the TIMEOUT state flag
 is turned on.

 You can decide whether or not you want a client disconnect to cause
 your script to be aborted. Sometimes it is handy to always have your
 scripts run to completion even if there is no remote browser receiving
 the output. The default behaviour is however for your script to be
 aborted when the remote client disconnects. This behaviour can be
 set via the ignore_user_abort php.ini directive as well as through
 the corresponding php_value ignore_user_abort Apache
 httpd.conf directive or
 with the ignore_user_abort() function. If you do
 not tell PHP to ignore a user abort and the user aborts, your script
 will terminate. The one exception is if you have registered a shutdown
 function using register_shutdown_function(). With a
 shutdown function, when the remote user hits his STOP button, the
 next time your script tries to output something PHP will detect that
 the connection has been aborted and the shutdown function is called.
 This shutdown function will also get called at the end of your script
 terminating normally, so to do something different in case of a client
 disconnect you can use the connection_aborted()
 function. This function will return true if the connection was
 aborted.

 Your script can also be terminated by the built-in script timer.
 The default timeout is 30 seconds. It can be changed using
 the max_execution_time php.ini directive or the corresponding
 php_value max_execution_time Apache httpd.conf
 directive as well as with
 the set_time_limit() function. When the timer
 expires the script will be aborted and as with the above client
 disconnect case, if a shutdown function has been registered it will
 be called. Within this shutdown function you can check to see if
 a timeout caused the shutdown function to be called by calling the
 connection_status() function. This function will
 return 2 if a timeout caused the shutdown function to be called.

 One thing to note is that both the ABORTED and the TIMEOUT states
 can be active at the same time. This is possible if you tell
 PHP to ignore user aborts. PHP will still note the fact that
 a user may have broken the connection, but the script will keep
 running. If it then hits the time limit it will be aborted and
 your shutdown function, if any, will be called. At this point
 you will find that connection_status()
 returns 3.

 Persistent Database Connections

 Persistent Database Connections

 Persistent connections are links that do not close when the
 execution of your script ends. When a persistent connection is
 requested, PHP checks if there's already an identical persistent
 connection (that remained open from earlier) - and if it exists, it
 uses it. If it does not exist, it creates the link. An 'identical'
 connection is a connection that was opened to the same host, with
 the same username and the same password (where applicable).

 People who aren't thoroughly familiar with the way web servers work
 and distribute the load may mistake persistent connects for what
 they're not. In particular, they do not give
 you an ability to open 'user sessions' on the same link, they
 do not give you an ability to build up a
 transaction efficiently, and they don't do a whole lot of other
 things. In fact, to be extremely clear about the subject,
 persistent connections don't give you any
 functionality that wasn't possible with their non-persistent
 brothers.

 Why?

 This has to do with the way web servers work. There are three ways
 in which your web server can utilize PHP to generate web pages.

 The first method is to use PHP as a CGI "wrapper". When run this
 way, an instance of the PHP interpreter is created and destroyed
 for every page request (for a PHP page) to your web server.
 Because it is destroyed after every request, any resources that it
 acquires (such as a link to an SQL database server) are closed when
 it is destroyed. In this case, you do not gain anything from trying
 to use persistent connections -- they simply don't persist.

 The second, and most popular, method is to run PHP as a module in a
 multiprocess web server, which currently only includes Apache. A
 multiprocess server typically has one process (the parent) which
 coordinates a set of processes (its children) who actually do the
 work of serving up web pages. When a request comes in from a
 client, it is handed off to one of the children that is not already
 serving another client. This means that when the same client makes
 a second request to the server, it may be served by a different
 child process than the first time. When opening a persistent connection,
 every following page requesting SQL services can reuse the same
 established connection to the SQL server.

 The last method is to use PHP as a plug-in for a multithreaded web
 server. Currently PHP has support for WSAPI, and NSAPI (on
 Windows), which all allow PHP to be used as a plug-in on multithreaded
 servers like Netscape FastTrack (iPlanet), Microsoft's Internet Information
 Server (IIS), and O'Reilly's WebSite Pro. The behavior is essentially
 the same as for the multiprocess model described before.

 If persistent connections don't have any added functionality, what
 are they good for?

 The answer here is extremely simple -- efficiency. Persistent
 connections are good if the overhead to create a link to your SQL
 server is high. Whether or not this overhead is really high depends
 on many factors. Like, what kind of database it is, whether or not
 it sits on the same computer on which your web server sits, how
 loaded the machine the SQL server sits on is and so forth. The
 bottom line is that if that connection overhead is high, persistent
 connections help you considerably. They cause the child process to
 simply connect only once for its entire lifespan, instead of every
 time it processes a page that requires connecting to the SQL
 server. This means that for every child that opened a persistent
 connection will have its own open persistent connection to the
 server. For example, if you had 20 different child processes that
 ran a script that made a persistent connection to your SQL server,
 you'd have 20 different connections to the SQL server, one from
 each child.

 Note, however, that this can have some drawbacks if you are using a
 database with connection limits that are exceeded by persistent
 child connections. If your database has a limit of 16 simultaneous
 connections, and in the course of a busy server session, 17 child
 threads attempt to connect, one will not be able to. If there are
 bugs in your scripts which do not allow the connections to shut
 down (such as infinite loops), the database with only 16 connections
 may be rapidly swamped. Check your database documentation for
 information on handling abandoned or idle connections.

 Warning

 There are a couple of additional caveats to keep in mind when
 using persistent connections. One is that when using table
 locking on a persistent connection, if the script for whatever
 reason cannot release the lock, then subsequent scripts using the
 same connection will block indefinitely and may require that you
 either restart the httpd server or the database server. Another is
 that when using transactions, a transaction block will also carry
 over to the next script which uses that connection if script execution
 ends before the transaction block does. In either case, you can
 use register_shutdown_function() to register a
 simple cleanup function to unlock your tables or roll back your
 transactions. Better yet, avoid the problem entirely by not using
 persistent connections in scripts which use table locks or
 transactions (you can still use them elsewhere).

 An important summary. Persistent connections were designed to have
 one-to-one mapping to regular connections. That means that you
 should always be able to replace persistent
 connections with non-persistent connections, and it won't change
 the way your script behaves. It may (and
 probably will) change the efficiency of the script, but not its
 behavior!

 See also ibase_pconnect(), ociplogon(),
 odbc_pconnect(), oci_pconnect(),
 pfsockopen(), and pg_pconnect().

 Using PHP from the command line

 Using PHP from the command line

Table of Contents
	Differences to other SAPIs
	Options
	Usage
	I/O streams
	Interactive shell
	Built-in web server
	INI settings

 Introduction

 The main focus of CLI SAPI
 is for developing shell applications with PHP. There
 are quite a few differences between the CLI SAPI and other
 SAPIs which are explained in this chapter. It is worth
 mentioning that CLI and CGI are different
 SAPIs although they do share many of the same behaviors.

 The CLI SAPI is enabled by default using
 --enable-cli, but may be disabled using
 the --disable-cli option when running
 ./configure.

 The name, location and existence of the CLI/CGI
 binaries will differ depending on how PHP is installed on your system. By
 default when executing make, both the CGI
 and CLI are built and placed as sapi/cgi/php-cgi and
 sapi/cli/php respectively, in your PHP source directory.
 You will note that both are named php. What happens during
 make install depends on your configure line. If a module
 SAPI is chosen during configure, such as apxs, or the
 --disable-cgi option is used, the CLI is
 copied to {PREFIX}/bin/php during
 make install otherwise the CGI is placed
 there. So, for example, if --with-apxs is
 in your configure line then the CLI is copied to {PREFIX}/bin/php
 during make install. If you want to override
 the installation of the CGI binary, use make
 install-cli after make install. Alternatively you
 can specify --disable-cgi in your configure
 line.

 Note:

 Because both --enable-cli and
 --enable-cgi are enabled by default,
 simply having --enable-cli in your
 configure line does not necessarily mean the CLI will be copied as
 {PREFIX}/bin/php during make install.

 The CLI binary is distributed in the main folder as
 php.exe on Windows. The CGI version is
 distributed as php-cgi.exe. Additionally, a
 php-win.exe is distributed if PHP is configured using
 --enable-cli-win32. This does the same as
 the CLI version, except that it doesn't output anything and thus provides
 no console.

 Note:
 What SAPI do I have?

 From a shell, typing php -v will tell you
 whether php is CGI or CLI. See
 also the function php_sapi_name() and the constant
 PHP_SAPI.

 Note:

 A Unix manual page is available by typing man
 php in the shell environment.

 Differences to other SAPIs

 Differences to other SAPIs

 Remarkable differences of the CLI SAPI compared to other
 SAPIs:

 	

 Unlike the CGI SAPI, no headers are
 written to the output.

 Though the CGI SAPI provides a way
 to suppress HTTP headers, there's no equivalent switch to enable them in
 the CLI SAPI.

 CLI is started up in quiet mode by default, though the -q
 and --no-header switches are kept for compatibility so
 that it is possible to use older CGI scripts.

 It does not change the working directory to that of the script.
 (-C and --no-chdir switches kept for
 compatibility)

 Plain text error messages (no HTML formatting).

 	

 There are certain php.ini directives which are overridden by the
 CLI SAPI because they do not make sense in shell environments:

 Overridden php.ini directives

 	Directive
 	CLI SAPI default value
 	Comment

 	html_errors
 	false
 	
 Defaults to false, as it can be quite hard to read error messages
 in the shell environment when they are cluttered up with uninterpreted
 HTML tags.

 	implicit_flush
 	true
 	
 In a shell environment, it is usually desirable for output, such as
 from print, echo and
 friends, to be displayed immediately, and not held in a buffer.
 Nonetheless, it is still possible to use
 output buffering to
 defer or manipulate standard output.

 	max_execution_time
 	0 (unlimited)
 	
 PHP in a shell environment tends to be used for a much more diverse
 range of purposes than typical Web-based scripts, and as these can
 be very long-running, the maximum execution time is set to unlimited.

 	register_argc_argv
 	true
 	

 Setting this to true means that scripts executed via the
 CLI SAPI always have access to
 argc (number of arguments passed to the
 application) and argv (array of the actual
 arguments).

 The PHP variables $argc
 and $argv are automatically set to the appropriate
 values when using the CLI SAPI. These values can
 also be found in the $_SERVER array, for example:
 $_SERVER['argv'].

 	output_buffering
 	false
 	

 Although the php.ini setting is hardcoded to false, the
 Output buffering functions
 are available.

 	max_input_time
 	false
 	

 The PHP CLI does not support GET, POST or file uploads.

 Note:

 These directives cannot be initialized with another value from the
 configuration file php.ini or a custom one (if specified). This
 limitation is because the values are applied after all configuration
 files have been parsed. However, their values can be changed
 during runtime (although this is not sensible for all of them,
 such as register_argc_argv).

 Note:

 It is recommended to set
 ignore_user_abort for
 command line scripts. See ignore_user_abort() for
 more information.

 	

 To ease working in the shell environment, a number of constants are
 defined for I/O streams
 .

 	

 The CLI SAPI does not change the
 current directory to the directory of the executed script.

 Example #1
 Example showing the difference to the CGI
 SAPI:

<?php
// Our simple test application named test.php
echo getcwd(), "\n";
?>

 When using the CGI version, the output is:

$ pwd
/tmp

$ php -q another_directory/test.php
/tmp/another_directory

 This clearly shows that PHP changes its current directory to the one of
 the executed script.

 Using the CLI SAPI yields:

$ pwd
/tmp

$ php -f another_directory/test.php
/tmp

 This allows greater flexibility when writing shell tools in PHP.

 Note:

 The CGI SAPI supports this
 CLI SAPI behaviour by means of the -C switch when run
 from the command line.

 Command line options

 Command line options

 The list of command line options provided by the PHP binary can be queried
 at any time by running PHP with the -h switch:

Usage: php [options] [-f] <file> [--] [args...]
 php [options] -r <code> [--] [args...]
 php [options] [-B <begin_code>] -R <code> [-E <end_code>] [--] [args...]
 php [options] [-B <begin_code>] -F <file> [-E <end_code>] [--] [args...]
 php [options] -- [args...]
 php [options] -a

 -a Run interactively
 -c <path>|<file> Look for php.ini file in this directory
 -n No php.ini file will be used
 -d foo[=bar] Define INI entry foo with value 'bar'
 -e Generate extended information for debugger/profiler
 -f <file> Parse and execute <file>.
 -h This help
 -i PHP information
 -l Syntax check only (lint)
 -m Show compiled in modules
 -r <code> Run PHP <code> without using script tags <?..?>
 -B <begin_code> Run PHP <begin_code> before processing input lines
 -R <code> Run PHP <code> for every input line
 -F <file> Parse and execute <file> for every input line
 -E <end_code> Run PHP <end_code> after processing all input lines
 -H Hide any passed arguments from external tools.
 -S <addr>:<port> Run with built-in web server.
 -t <docroot> Specify document root <docroot> for built-in web server.
 -s Output HTML syntax highlighted source.
 -v Version number
 -w Output source with stripped comments and whitespace.
 -z <file> Load Zend extension <file>.

 args... Arguments passed to script. Use -- args when first argument
 starts with - or script is read from stdin

 --ini Show configuration file names

 --rf <name> Show information about function <name>.
 --rc <name> Show information about class <name>.
 --re <name> Show information about extension <name>.
 --rz <name> Show information about Zend extension <name>.
 --ri <name> Show configuration for extension <name>.

 Command line options

 	Option
 	Long Option
 	Description

 	-a
 	--interactive
 	

 Run PHP interactively. For more information, see the Interactive shell
 section.

 	-b
 	--bindpath
 	

 Bind Path for external FASTCGI Server mode (CGI
 only).

 	-C
 	--no-chdir
 	

 Do not chdir to the script's directory (CGI only).

 	-q
 	--no-header
 	

 Quiet-mode. Suppress HTTP header output
 (CGI only).

 	-T
 	--timing
 	

 Measure execution time of script repeated count
 times (CGI only).

 	-c
 	--php-ini
 	

 Specifies either a directory in which to look for
 php.ini, or a custom INI file
 (which does not need to be named php.ini), e.g.:

$ php -c /custom/directory/ my_script.php

$ php -c /custom/directory/custom-file.ini my_script.php

 If this option is not specified, php.ini is searched for in the
 default locations.

 	-n
 	--no-php-ini
 	

 Ignore php.ini completely.

 	-d
 	--define
 	

 Set a custom value for any of the configuration
 directives allowed in php.ini. The syntax is:

 -d configuration_directive[=value]

 Example #1 Example of using -d to set an INI setting

Omitting the value part will set the given configuration directive to "1"
$ php -d max_execution_time
 -r '$foo = ini_get("max_execution_time"); var_dump($foo);'
string(1) "1"

Passing an empty value part will set the configuration directive to ""
php -d max_execution_time=
 -r '$foo = ini_get("max_execution_time"); var_dump($foo);'
string(0) ""

The configuration directive will be set to anything passed after the '=' character
$ php -d max_execution_time=20
 -r '$foo = ini_get("max_execution_time"); var_dump($foo);'
string(2) "20"
$ php
 -d max_execution_time=doesntmakesense
 -r '$foo = ini_get("max_execution_time"); var_dump($foo);'
string(15) "doesntmakesense"

 	-e
 	--profile-info
 	

 Activate the extended information mode, to be used by a
 debugger/profiler.

 	-f
 	--file
 	

 Parse and execute the specified file. The
 -f is optional and may be omitted - providing just
 the filename to execute is sufficient.

 	-h and -?
 	--help and --usage
 	
 Output a list of
 command line options with one line descriptions of what they do.

 	-i
 	--info
 	
 Calls phpinfo(), and prints out the results.
 If PHP is not working correctly, it is advisable to use the command
 php -i and see whether any error
 messages are printed out before or in place of the information tables.
 Beware that when using the CGI mode the output is in
 HTML and therefore very large.

 	-l
 	--syntax-check
 	

 Provides a convenient way to perform only a syntax check
 on the given PHP code. On success, the text
 No syntax errors detected in <filename> is
 written to standard output and the shell return code is
 0. On failure, the text Errors parsing
 <filename> in addition to the internal parser error
 message is written to standard output and the shell return code is set
 to -1.

 This option won't find fatal errors (like undefined functions). Use
 the -f to test for fatal errors too.

 Note:

 This option does not work together with the -r
 option.

 	-m
 	--modules
 	

 Example #2 Printing built in (and loaded) PHP and Zend modules

$ php -m
[PHP Modules]
xml
tokenizer
standard
session
posix
pcre
overload
mysql
mbstring
ctype

[Zend Modules]

 	-r
 	--run
 	

 Allows execution of PHP included directly on the command line.
 The PHP start and end tags (<?php and
 ?>) are not
 needed and will cause a parse error if present.

 Note:

 Care must be taken when using this form of PHP not
 to collide with command line variable substitution done by the
 shell.

 Example #3 Getting a syntax error when using double quotes

$ php -r "$foo = get_defined_constants();"
PHP Parse error: syntax error, unexpected '=' in Command line code on line 1

Parse error: syntax error, unexpected '=' in Command line code on line 1

 The problem here is that sh/bash performs variable substitution
 even when using double quotes ". Since the
 variable $foo is unlikely to be defined, it
 expands to nothing which results in the code passed to
 PHP for execution actually reading:

$ php -r " = get_defined_constants();"

 The correct way would be to use single quotes '.
 Variables in single-quoted strings are not expanded
 by sh/bash.

 Example #4 Using single quotes to prevent the shell's variable
 substitution

$ php -r '$foo = get_defined_constants(); var_dump($foo);'
array(370) {
 ["E_ERROR"]=>
 int(1)
 ["E_WARNING"]=>
 int(2)
 ["E_PARSE"]=>
 int(4)
 ["E_NOTICE"]=>
 int(8)
 ["E_CORE_ERROR"]=>
 [...]

 If using a shell other than sh/bash, further issues might be
 experienced - if appropriate, a bug report should be opened at
 https://github.com/php/php-src/issues.
 It is still easy to run into trouble when trying to use variables
 (shell or PHP) in command-line code, or using backslashes for
 escaping, so take great care when doing so. You have been warned!

 Note:

 -r is available in the CLI SAPI, but not in the
 CGI SAPI.

 Note:

 This option is only intended for very basic code, so some
 configuration directives (such as auto_prepend_file and auto_append_file) are ignored
 in this mode.

 	-B
 	--process-begin
 	

 PHP code to execute before processing stdin.

 	-R
 	--process-code
 	

 PHP code to execute for every input line.

 There are two special variables available in this mode:
 $argn and $argi.
 $argn will contain the line PHP is processing at
 that moment, while $argi will contain the line
 number.

 	-F
 	--process-file
 	

 PHP file to execute for every input line.

 	-E
 	--process-end
 	

 PHP code to execute after processing the input.

 Example #5 Using the -B, -R and
 -E options to count the number of lines of a
 project.

$ find my_proj | php -B '$l=0;' -R '$l += count(@file($argn));' -E 'echo "Total Lines: $l\n";'
Total Lines: 37328

 	-S
 	--server
 	

 Starts built-in web
 server.

 	-t
 	--docroot
 	
 Specifies document root for built-in web server.

 	-s
 	--syntax-highlight and --syntax-highlighting
 	

 Display colour syntax highlighted source.

 This option uses the internal mechanism to parse the file and writes
 an HTML highlighted version of it to
 standard output. Note that all it does is generate a block of
 <code> [...] </code>
 HTML tags, no HTML headers.

 Note:

 This option does not work together with the -r
 option.

 	-v
 	--version
 	

 Example #6 Using -v to get the SAPI
 name and the version of PHP and Zend

$ php -v
PHP 5.3.1 (cli) (built: Dec 11 2009 19:55:07)
Copyright (c) 1997-2009 The PHP Group
Zend Engine v2.3.0, Copyright (c) 1998-2009 Zend Technologies

 	-w
 	--strip
 	

 Display source with comments and whitespace stripped.

 Note:

 This option does not work together with the -r
 option.

 	-z
 	--zend-extension
 	

 Load Zend extension. If only a filename is given, PHP tries to load
 this extension from the current default library path on your system
 (usually /etc/ld.so.conf on Linux systems, for
 example). Passing a filename with an absolute path will
 not use the system's library search path. A relative filename including
 directory information will tell PHP to try
 loading the extension relative to the current directory.

 	
 	--ini
 	

 Show configuration file names and scanned directories.

 Example #7 --ini example

$ php --ini
Configuration File (php.ini) Path: /usr/dev/php/5.2/lib
Loaded Configuration File: /usr/dev/php/5.2/lib/php.ini
Scan for additional .ini files in: (none)
Additional .ini files parsed: (none)

 	--rf
 	--rfunction
 	

 Show information about the given function or class method (e.g.
 number and name of the parameters).

 This option is only available if PHP was compiled with
 Reflection support.

 Example #8 basic --rf usage

$ php --rf var_dump
Function [<internal> public function var_dump] {

 - Parameters [2] {
 Parameter #0 [<required> $var]
 Parameter #1 [<optional> $...]
 }
}

 	--rc
 	--rclass
 	

 Show information about the given class (list of constants, properties
 and methods).

 This option is only available if PHP was compiled with
 Reflection support.

 Example #9 --rc example

$ php --rc Directory
Class [<internal:standard> class Directory] {

 - Constants [0] {
 }

 - Static properties [0] {
 }

 - Static methods [0] {
 }

 - Properties [0] {
 }

 - Methods [3] {
 Method [<internal> public method close] {
 }

 Method [<internal> public method rewind] {
 }

 Method [<internal> public method read] {
 }
 }
}

 	--re
 	--rextension
 	

 Show information about the given extension (list of php.ini options,
 defined functions, constants and classes).

 This option is only available if PHP was compiled with
 Reflection support.

 Example #10 --re example

$ php --re json
Extension [<persistent> extension #19 json version 1.2.1] {

 - Functions {
 Function [<internal> function json_encode] {
 }
 Function [<internal> function json_decode] {
 }
 }
}

 	--rz
 	--rzendextension
 	

 Show the configuration information for the given Zend extension (the
 same information that is returned by phpinfo()).

 	--ri
 	--rextinfo
 	

 Show the configuration information for the given extension (the same
 information that is returned by phpinfo()).
 The core configuration information
 is available using "main" as extension name.

 Example #11 --ri example

$ php --ri date

date

date/time support => enabled
"Olson" Timezone Database Version => 2009.20
Timezone Database => internal
Default timezone => Europe/Oslo

Directive => Local Value => Master Value
date.timezone => Europe/Oslo => Europe/Oslo
date.default_latitude => 59.930972 => 59.930972
date.default_longitude => 10.776699 => 10.776699
date.sunset_zenith => 90.583333 => 90.583333
date.sunrise_zenith => 90.583333 => 90.583333

 Note:

 Options -rBRFEH, --ini and
 --r[fcezi] are available only in CLI.

 Executing PHP files

 Executing PHP files

 There are three different ways of supplying the CLI SAPI with PHP code
 to be executed:

 	

 Tell PHP to execute a certain file.

$ php my_script.php

$ php -f my_script.php

 Both ways (whether using the -f switch or not) execute
 the file my_script.php. Note that there is no
 restriction on which files can be executed; in particular, the filename
 is not required have a .php extension.

 	

 Pass the PHP code to execute directly on the command line.

$ php -r 'print_r(get_defined_constants());'

 Special care has to be taken with regard to shell variable substitution and
 usage of quotes.

 Note:

 Read the example carefully: there are no beginning or ending tags! The
 -r switch simply does not need them, and using them will
 lead to a parse error.

 	

 Provide the PHP code to execute via standard input
 (stdin).

 This gives the powerful ability to create PHP code dynamically and feed it
 to the binary, as shown in this (fictional) example:

$ some_application | some_filter | php | sort -u > final_output.txt

 You cannot combine any of the three ways to execute code.

 As with every shell application, the PHP binary accepts a number of
 arguments; however, the PHP script can also receive further arguments. The
 number of arguments that can be passed to your script is not limited by PHP
 (and although the shell has a limit to the number of characters which can be
 passed, this is not in general likely to be hit). The arguments passed to
 the script are available in the global array $argv. The
 first index (zero) always contains the name of the script as called from the
 command line. Note that, if the code is executed in-line using the command
 line switch -r, the value of $argv[0]
 will be "Standard input code"; prior to PHP 7.2.0, it was a dash ("-") instead. The same is true if the code is
 executed via a pipe from STDIN.

 A second global variable, $argc,
 contains the number of elements in the $argv array
 (not the number of arguments passed to the
 script).

 As long as the arguments to be passed to the script do not start with
 the - character, there's nothing special to watch out for.
 Passing an argument to the script which starts with a -
 will cause trouble because the PHP interpreter thinks it has to handle it
 itself, even before executing the script. To prevent this, use the argument
 list separator --. After this separator has been parsed by
 PHP, every following argument is passed untouched to the script.

This will not execute the given code but will show the PHP usage
$ php -r 'var_dump($argv);' -h
Usage: php [options] [-f] <file> [args...]
[...]

This will pass the '-h' argument to the script and prevent PHP from showing its usage
$ php -r 'var_dump($argv);' -- -h
array(2) {
 [0]=>
 string(1) "-"
 [1]=>
 string(2) "-h"
}

 However, on Unix systems there's another way of using PHP for shell
 scripting: make the first line of the script start with
 #!/usr/bin/php (or whatever the path to your PHP CLI
 binary is if different). The rest of the file should contain normal PHP code
 within the usual PHP starting and end tags. Once the execution attributes of
 the file are set appropriately (e.g. chmod +x test),
 the script can be executed like any other shell or perl script:

 Example #1 Execute PHP script as shell script

#!/usr/bin/php
<?php
var_dump($argv);
?>

 Assuming this file is named test in the current
 directory, it is now possible to do the following:

$ chmod +x test
$./test -h -- foo
array(4) {
 [0]=>
 string(6) "./test"
 [1]=>
 string(2) "-h"
 [2]=>
 string(2) "--"
 [3]=>
 string(3) "foo"
}

 As can be seen, in this case no special care needs to be taken when passing parameters
 starting with -.

 The PHP executable can be used to run PHP scripts absolutely independent of
 the web server. On Unix systems, the special #! (or
 "shebang") first line should be added to PHP scripts so that the system can
 automatically tell which program should run the script. On Windows platforms,
 it's possible to associate php.exe with the double
 click option of the .php extension, or a batch file can
 be created to run scripts through PHP. The special shebang first line for
 Unix does no harm on Windows (as it's formatted as a PHP comment), so cross
 platform programs can be written by including it. A simple example of
 writing a command line PHP program is shown below.

 Example #2 Script intended to be run from command line (script.php)

#!/usr/bin/php
<?php

if ($argc != 2 || in_array($argv[1], array('--help', '-help', '-h', '-?'))) {
?>

This is a command line PHP script with one option.

 Usage:
 <?php echo $argv[0]; ?> <option>

 <option> can be some word you would like
 to print out. With the --help, -help, -h,
 or -? options, you can get this help.

<?php
} else {
 echo $argv[1];
}
?>

 The script above includes the Unix shebang first line to indicate that this
 file should be run by PHP. We are working with a CLI version here, so
 no HTTP headers will be output.

 The program first checks that there is the required one argument (in
 addition to the script name, which is also counted). If not, or if the
 argument was --help, -help,
 -h or -?, the help message is printed out,
 using $argv[0] to dynamically print the script name as
 typed on the command line. Otherwise, the argument is echoed out exactly as
 received.

 To run the above script on Unix, it must be made
 executable, and called simply as script.php echothis or
 script.php -h. On Windows, a batch file similar to the
 following can be created for this task:

 Example #3 Batch file to run a command line PHP script (script.bat)

@echo OFF
"C:\php\php.exe" script.php %*

 Assuming the above program is named script.php, and the
 CLI php.exe is in C:\php\php.exe,
 this batch file will run it, passing on all appended options:
 script.bat echothis or script.bat -h.

 See also the Readline extension
 documentation for more functions which can be used to enhance command line
 applications in PHP.

 On Windows, PHP can be configured to run without the need to
 supply the C:\php\php.exe or the .php
 extension, as described in Command
 Line PHP on Microsoft Windows.

 Note:

 On Windows it is recommended to run PHP under an actual user account.
 When running under a network service certain operations will fail, because
 "No mapping between account names and security IDs was done".

 Input/output streams

 Input/output streams

 The CLI SAPI defines a few constants for I/O streams to make programming
 for the command line a bit easier.

 CLI specific Constants

 	Constant
 	Description

 	STDIN
 	
 An already opened stream to stdin. This saves
 opening it with

<?php
$stdin = fopen('php://stdin', 'r');
?>

 If you want to read single line from stdin, you can
 use

<?php
$line = trim(fgets(STDIN)); // reads one line from STDIN
fscanf(STDIN, "%d\n", $number); // reads number from STDIN
?>

 	STDOUT
 	
 An already opened stream to stdout. This saves
 opening it with

<?php
$stdout = fopen('php://stdout', 'w');
?>

 	STDERR
 	

 An already opened stream to stderr.
 This saves opening it with

<?php
$stderr = fopen('php://stderr', 'w');
?>

 Given the above, you don't need to open e.g. a stream for
 stderr yourself but simply use the constant instead of
 the stream resource:

php -r 'fwrite(STDERR, "stderr\n");'

 You do not need to explicitly close these streams, as they are closed
 automatically by PHP when your script ends.

 Note:

 These constants are not available if reading the PHP script from
 stdin.

 Interactive shell

 Interactive shell

 The CLI SAPI provides an interactive shell using the
 -a option if PHP is compiled with the --with-readline option.
 As of PHP 7.1.0 the interactive shell is also available on Windows, if the
 readline extension is enabled.

 Using the interactive shell you are able to type PHP code and have it
 executed directly.

 Example #1 Executing code using the interactive shell

$ php -a
Interactive shell

php > echo 5+8;
13
php > function addTwo($n)
php > {
php { return $n + 2;
php { }
php > var_dump(addtwo(2));
int(4)
php >

 The interactive shell also features tab completion for functions,
 constants, class names, variables, static method calls and class
 constants.

 Example #2 Tab completion

 Pressing the tab key twice when there are multiple possible completions
 will result in a list of these completions:

php > strp[TAB][TAB]
strpbrk strpos strptime
php > strp

 When there is only one possible completion, pressing tab once will
 complete the rest on the same line:

php > strpt[TAB]ime(

 Completion will also work for names that have been defined
 during the current interactive shell session:

php > $fooThisIsAReallyLongVariableName = 42;
php > $foo[TAB]ThisIsAReallyLongVariableName

 The interactive shell stores your history which can be accessed using the up
 and down keys. The history is saved in the
 ~/.php_history file.

 The CLI SAPI provides
 the php.ini settings cli.pager and
 cli.prompt. The cli.pager
 setting allows an external program (such as less) to
 act as a pager for the output instead of being displayed directly on the
 screen. The cli.prompt setting makes it possible to
 change the php > prompt.

 It is also possible to set
 php.ini settings in the interactive shell using a shorthand notation.

 Example #3 Setting php.ini settings in the interactive shell

 The cli.prompt setting:

php > #cli.prompt=hello world :>
hello world :>

 Using backticks it is possible to have PHP code executed in the prompt:

php > #cli.prompt=`echo date('H:i:s');` php >
15:49:35 php > echo 'hi';
hi
15:49:43 php > sleep(2);
15:49:45 php >

 Setting the pager to less:

php > #cli.pager=less
php > phpinfo();
(output displayed in less)
php >

 The cli.prompt setting supports a few escape
 sequences:

 cli.prompt escape sequences

 	Sequence
 	Description

 	\e
 	
 Used for adding colors to the prompt. An example could be
 \e[032m\v \e[031m\b \e[34m\> \e[0m

 	\v
 	The PHP version.

 	\b
 	
 Indicates which block PHP is in. For instance /* to
 indicate being inside a multi-line comment. The outer scope is denoted by
 php.

 	\>
 	
 Indicates the prompt character. By default this is
 >, but changes when the shell is inside an
 unterminated block or string. Possible characters are: ' " {
 (>

 Note:

 Files included through auto_prepend_file and auto_append_file are parsed in
 this mode but with some restrictions - e.g. functions have to be
 defined before called.

 Interactive mode

 If the readline extension is not available, prior to PHP 8.1.0, invoking the CLI SAPI with the
 -a option provided the interactive mode. In this mode, a
 complete PHP script is supposed to be given via STDIN, and after termination
 with CRTL+d (POSIX) or CTRL+z
 followed by ENTER (Windows), this script is evaluated.
 This is basically the same as invoking the CLI SAPI without the -a
 option.

 As of PHP 8.1.0, invoking the CLI SAPI with the -a option
 fails, if the readline extension is not available.

 Built-in web server

 Built-in web server

 Warning

 This web server is designed to aid application development. It may also
 be useful for testing purposes or for application demonstrations that are
 run in controlled environments. It is not intended to be a full-featured
 web server. It should not be used on a public network.

 The CLI SAPI provides a built-in web server.

 The web server runs only one single-threaded process, so
 PHP applications will stall if a request is blocked.

 URI requests are served from the current working directory where
 PHP was started, unless the -t option is used to specify an
 explicit document root. If a URI request does not specify a file,
 then either index.php or index.html in the given directory are
 returned. If neither file exists, the lookup for index.php and index.html
 will be continued in the parent directory and so on until one is found or
 the document root has been reached. If an index.php or index.html is found,
 it is returned and $_SERVER['PATH_INFO'] is set to the trailing part of
 the URI. Otherwise a 404 response code is returned.

 If a PHP file is given on the command line when the web server is
 started it is treated as a "router" script. The script is run at
 the start of each HTTP request. If this script returns false,
 then the requested resource is returned as-is. Otherwise the
 script's output is returned to the browser.

 Standard MIME types are returned for files with extensions:
 .3gp, .apk, .avi, .bmp, .css, .csv, .doc, .docx, .flac, .gif, .gz, .gzip, .htm, .html, .ics, .jpe, .jpeg, .jpg, .js, .kml, .kmz, .m4a, .mov, .mp3, .mp4, .mpeg, .mpg, .odp, .ods, .odt, .oga, .ogg, .ogv, .pdf, .png, .pps, .pptx, .qt, .svg, .swf, .tar, .text, .tif, .txt, .wav, .webm, .wmv, .xls, .xlsx, .xml, .xsl, .xsd, .zip
 .

 As of PHP 7.4.0, the built-in webserver can be configured to fork multiple
 workers in order to test code that requires multiple concurrent requests
 to the built-in webserver.
 Set the PHP_CLI_SERVER_WORKERS environment variable to the
 number of desired workers before starting the server.

 Note:
 This feature is not supported on Windows.

 Warning

 This experimental feature is not
 intended for production usage. Generally, the built-in Web Server is
 not intended for production usage.

 Example #1 Starting the web server

$ cd ~/public_html
$ php -S localhost:8000

 The terminal will show:

PHP 5.4.0 Development Server started at Thu Jul 21 10:43:28 2011
Listening on localhost:8000
Document root is /home/me/public_html
Press Ctrl-C to quit

 After URI requests for http://localhost:8000/ and
 http://localhost:8000/myscript.html the terminal will show
 something similar to:

PHP 5.4.0 Development Server started at Thu Jul 21 10:43:28 2011
Listening on localhost:8000
Document root is /home/me/public_html
Press Ctrl-C to quit.
[Thu Jul 21 10:48:48 2011] ::1:39144 GET /favicon.ico - Request read
[Thu Jul 21 10:48:50 2011] ::1:39146 GET / - Request read
[Thu Jul 21 10:48:50 2011] ::1:39147 GET /favicon.ico - Request read
[Thu Jul 21 10:48:52 2011] ::1:39148 GET /myscript.html - Request read
[Thu Jul 21 10:48:52 2011] ::1:39149 GET /favicon.ico - Request read

 Note that prior to PHP 7.4.0, symlinked statical resources have not been
 accessible on Windows, unless the router script would handle these.

 Example #2 Starting with a specific document root directory

$ cd ~/public_html
$ php -S localhost:8000 -t foo/

 The terminal will show:

PHP 5.4.0 Development Server started at Thu Jul 21 10:50:26 2011
Listening on localhost:8000
Document root is /home/me/public_html/foo
Press Ctrl-C to quit

 Example #3 Using a Router Script

 In this example, requests for images will display them, but requests for HTML files will display "Welcome to PHP":

<?php
// router.php
if (preg_match('/\.(?:png|jpg|jpeg|gif)$/', $_SERVER["REQUEST_URI"])) {
 return false; // serve the requested resource as-is.
} else {
 echo "<p>Welcome to PHP</p>";
}
?>

$ php -S localhost:8000 router.php

 Example #4 Checking for CLI Web Server Use

 To reuse a framework router script during development with the CLI web server and later also with a production web server:

<?php
// router.php
if (php_sapi_name() == 'cli-server') {
 /* route static assets and return false */
}
/* go on with normal index.php operations */
?>

$ php -S localhost:8000 router.php

 Example #5 Handling Unsupported File Types

 If you need to serve a static resource whose MIME type is not handled by the CLI web server, use:

<?php
// router.php
$path = pathinfo($_SERVER["SCRIPT_FILENAME"]);
if ($path["extension"] == "el") {
 header("Content-Type: text/x-script.elisp");
 readfile($_SERVER["SCRIPT_FILENAME"]);
}
else {
 return FALSE;
}
?>

$ php -S localhost:8000 router.php

 Example #6 Accessing the CLI Web Server From Remote Machines

 You can make the web server accessible on port 8000 to any interface with:

$ php -S 0.0.0.0:8000

 Warning

 The built-in Web Server should not be used on a public network.

 INI settings

 INI settings

 CLI SAPI Configuration Options

 	Name
 	Default
 	Changeable
 	Changelog

 	cli_server.color
 	"0"
 	INI_ALL
 	

 Here's a short explanation of
the configuration directives.

 	
 cli_server.color
 bool

 	

 Enable the built-in development web server to use ANSI color coding
 in terminal output.

 Garbage Collection

 Garbage Collection

Table of Contents
	Reference Counting Basics
	Collecting Cycles
	Performance Considerations

 This section explains the merits of the new Garbage Collection (also known
 as GC) mechanism that is part of PHP 5.3.

 Reference Counting Basics

 Reference Counting Basics

 A PHP variable is stored in a container called a "zval". A zval container
 contains, besides the variable's type and value, two additional bits of
 information. The first is called "is_ref" and is a boolean value
 indicating whether or not the variable is part of a "reference set". With
 this bit, PHP's engine knows how to differentiate between normal variables
 and references. Since PHP allows user-land references, as created by the
 & operator, a zval container also has an internal reference counting
 mechanism to optimize memory usage. This second piece of additional
 information, called "refcount", contains how many variable names (also
 called symbols) point to this one zval container. All symbols are stored in
 a symbol table, of which there is one per scope. There is a scope for the
 main script (i.e., the one requested through the browser), as well as one
 for every function or method.

 A zval container is created when a new variable is created with a constant
 value, such as:

 Example #1 Creating a new zval container

<?php
$a = "new string";
?>

 In this case, the new symbol name, a, is created in the current scope,
 and a new variable container is created with the type string and the value
 new string. The "is_ref" bit is by default set to false because no
 user-land reference has been created. The "refcount" is set to 1 as
 there is only one symbol that makes use of this variable container. Note
 that references (i.e. "is_ref" is true) with "refcount" 1, are
 treated as if they are not references (i.e. as "is_ref" was false). If you have Xdebug installed, you can display this
 information by calling xdebug_debug_zval().

 Example #2 Displaying zval information

<?php
$a = "new string";
xdebug_debug_zval('a');
?>

 The above example will output:

a: (refcount=1, is_ref=0)='new string'

 Assigning this variable to another variable name will increase the refcount.

 Example #3 Increasing refcount of a zval

<?php
$a = "new string";
$b = $a;
xdebug_debug_zval('a');
?>

 The above example will output:

a: (refcount=2, is_ref=0)='new string'

 The refcount is 2 here, because the same variable container is linked
 with both a and b.
 PHP is smart enough not to copy the actual variable
 container when it is not necessary. Variable containers get destroyed when
 the "refcount" reaches zero. The "refcount" gets decreased by one when any
 symbol linked to the variable container leaves the scope (e.g. when the
 function ends) or when a symbol is unassigned (e.g. by calling unset()).
 The following example shows this:

 Example #4 Decreasing zval refcount

<?php
$a = "new string";
$c = $b = $a;
xdebug_debug_zval('a');
$b = 42;
xdebug_debug_zval('a');
unset($c);
xdebug_debug_zval('a');
?>

 The above example will output:

a: (refcount=3, is_ref=0)='new string'
a: (refcount=2, is_ref=0)='new string'
a: (refcount=1, is_ref=0)='new string'

 If we now call unset($a);, the variable container, including the type
 and value, will be removed from memory.

 Compound Types

 Things get a tad more complex with compound types such as arrays and
 objects. As opposed to scalar values, arrays
 and objects store their
 properties in a symbol table of their own. This means that the following
 example creates three zval containers:

 Example #5 Creating a array zval

<?php
$a = array('meaning' => 'life', 'number' => 42);
xdebug_debug_zval('a');
?>

 The above example will output
something similar to:

a: (refcount=1, is_ref=0)=array (
 'meaning' => (refcount=1, is_ref=0)='life',
 'number' => (refcount=1, is_ref=0)=42
)

 Or graphically

 [image: Zvals for a simple array]

 The three zval containers are: a, meaning, and number.
 Similar rules apply for increasing and decreasing "refcounts". Below, we add another
 element to the array, and set its value to the contents of an already
 existing element:

 Example #6 Adding already existing element to an array

<?php
$a = array('meaning' => 'life', 'number' => 42);
$a['life'] = $a['meaning'];
xdebug_debug_zval('a');
?>

 The above example will output
something similar to:

a: (refcount=1, is_ref=0)=array (
 'meaning' => (refcount=2, is_ref=0)='life',
 'number' => (refcount=1, is_ref=0)=42,
 'life' => (refcount=2, is_ref=0)='life'
)

 Or graphically

 [image: Zvals for a simple array with a reference]

 From the above Xdebug output, we see that both the old and new array
 elements now point to a zval container whose "refcount" is
 2. Although Xdebug's output shows two zval containers
 with value 'life', they are the same one. The
 xdebug_debug_zval() function does not show this, but
 you could see it by also displaying the memory pointer.

 Removing an element from the array is like removing a symbol from a scope.
 By doing so, the "refcount" of a container that an array element points to
 is decreased. Again, when the "refcount" reaches zero, the variable
 container is removed from memory. Again, an example to show this:

 Example #7 Removing an element from an array

<?php
$a = array('meaning' => 'life', 'number' => 42);
$a['life'] = $a['meaning'];
unset($a['meaning'], $a['number']);
xdebug_debug_zval('a');
?>

 The above example will output
something similar to:

a: (refcount=1, is_ref=0)=array (
 'life' => (refcount=1, is_ref=0)='life'
)

 Now, things get interesting if we add the array itself as an element of
 the array, which we do in the next example, in which we also sneak in a
 reference operator, since otherwise PHP would create a copy:

 Example #8 Adding the array itself as an element of it self

<?php
$a = array('one');
$a[] =& $a;
xdebug_debug_zval('a');
?>

 The above example will output
something similar to:

a: (refcount=2, is_ref=1)=array (
 0 => (refcount=1, is_ref=0)='one',
 1 => (refcount=2, is_ref=1)=...
)

 Or graphically

 [image: Zvals for an array with a circular reference]

 You can see that the array variable (a) as well as the second element
 (1) now point to a variable container that has a "refcount" of 2. The
 "..." in the display above shows that there is recursion involved, which,
 of course, in this case means that the "..." points back to the original
 array.

 Just like before, unsetting a variable removes the symbol, and the
 reference count of the variable container it points to is decreased by
 one. So, if we unset variable $a after running the above code, the
 reference count of the variable container that $a and element "1" point to
 gets decreased by one, from "2" to "1". This can be represented as:

 Example #9 Unsetting $a

(refcount=1, is_ref=1)=array (
 0 => (refcount=1, is_ref=0)='one',
 1 => (refcount=1, is_ref=1)=...
)

 Or graphically

 [image: Zvals after removal of array with a circular reference demonstrating the memory leak]

 Cleanup Problems

 Although there is no longer a symbol in any scope pointing to this
 structure, it cannot be cleaned up because the array element "1" still
 points to this same array. Because there is no external symbol pointing to
 it, there is no way for a user to clean up this structure; thus you get a
 memory leak. Fortunately, PHP will clean up this data structure at the end
 of the request, but before then, this is taking up valuable space in
 memory. This situation happens often if you're implementing parsing
 algorithms or other things where you have a child point back at a "parent"
 element. The same situation can also happen with objects of course, where
 it actually is more likely to occur, as objects are always implicitly used
 by reference.

 This might not be a problem if this only happens once or twice, but if
 there are thousands, or even millions, of these memory losses, this
 obviously starts being a problem. This is especially problematic in long
 running scripts, such as daemons where the request basically never ends,
 or in large sets of unit tests. The latter caused problems while
 running the unit tests for the Template component of the eZ Components
 library. In some cases, it would require over 2 GB of memory, which the
 test server didn't quite have.

 Collecting Cycles

 Collecting Cycles

 Traditionally, reference counting memory mechanisms, such as that used
 previously by PHP, fail to address circular reference memory leaks;
 however, as of 5.3.0, PHP implements the synchronous algorithm from the
 Concurrent Cycle Collection in Reference Counted Systems
 paper which addresses that issue.

 A full explanation of how the algorithm works would be slightly beyond the
 scope of this section, but the basics are explained here. First of all,
 we have to establish a few ground rules. If a refcount is increased, it's
 still in use and therefore, not garbage. If the refcount is decreased and
 hits zero, the zval can be freed. This means that garbage cycles can only
 be created when a refcount argument is decreased to a non-zero value.
 Secondly, in a garbage cycle, it is possible to discover which parts are
 garbage by checking whether it is possible to decrease their refcount by
 one, and then checking which of the zvals have a refcount of zero.

 [image: Garbage collection algorithm]

 To avoid having to call the checking of garbage cycles with every possible
 decrease of a refcount, the algorithm instead puts all possible roots
 (zvals) in the "root buffer" (marking them "purple"). It also makes sure
 that each possible garbage root ends up in the buffer only once. Only when
 the root buffer is full does the collection mechanism start for all the
 different zvals inside. See step A in the figure above.

 In step B, the algorithm runs a depth-first search on all possible roots
 to decrease by one the refcounts of each zval it finds, making sure not to
 decrease a refcount on the same zval twice (by marking them as "grey"). In
 step C, the algorithm again runs a depth-first search from each root node,
 to check the refcount of each zval again. If it finds that the refcount is
 zero, the zval is marked "white" (blue in the figure). If it's larger than
 zero, it reverts the decreasing of the refcount by one with a depth-first
 search from that point on, and they are marked "black" again. In the last
 step (D), the algorithm walks over the root buffer removing the zval roots
 from there, and meanwhile, checks which zvals have been marked "white" in
 the previous step. Every zval marked as "white" will be freed.

 Now that you have a basic understanding of how the algorithm works, we
 will look back at how this integrates with PHP. By default, PHP's garbage
 collector is turned on. There is, however, a php.ini
 setting that allows you to change this:
 zend.enable_gc.

 When the garbage collector is turned on, the cycle-finding algorithm as
 described above is executed whenever the root buffer runs full. The root
 buffer has a fixed size of 10,000 possible roots (although you can alter
 this by changing the GC_THRESHOLD_DEFAULT constant in
 Zend/zend_gc.c in the PHP source code, and re-compiling
 PHP). When the garbage collector is turned off, the cycle-finding
 algorithm will never run. However, possible roots will always be recorded
 in the root buffer, no matter whether the garbage collection mechanism has
 been activated with this configuration setting.

 If the root buffer becomes full with possible roots while the garbage
 collection mechanism is turned off, further possible roots will simply not
 be recorded. Those possible roots that are not recorded will never be
 analyzed by the algorithm. If they were part of a circular reference
 cycle, they would never be cleaned up and would create a memory leak.

 The reason why possible roots are recorded even if the mechanism has been
 disabled is because it's faster to record possible roots than to have to
 check whether the mechanism is turned on every time a possible root could
 be found. The garbage collection and analysis mechanism itself, however,
 can take a considerable amount of time.

 Besides changing the zend.enable_gc configuration
 setting, it is also possible to turn the garbage collecting mechanism on
 and off by calling gc_enable() or
 gc_disable() respectively. Calling those functions has
 the same effect as turning on or off the mechanism with the configuration
 setting. It is also possible to force the collection of cycles even if the
 possible root buffer is not full yet. For this, you can use the
 gc_collect_cycles() function. This function will return
 how many cycles were collected by the algorithm.

 The rationale behind the ability to turn the mechanism on and off, and to
 initiate cycle collection yourself, is that some parts of your application
 could be highly time-sensitive. In those cases, you might not want the
 garbage collection mechanism to kick in. Of course, by turning off the
 garbage collection for certain parts of your application, you do risk
 creating memory leaks because some possible roots might not fit into the
 limited root buffer. Therefore, it is probably wise to call
 gc_collect_cycles() just before you call
 gc_disable() to free up the memory that could be lost
 through possible roots that are already recorded in the root buffer. This
 then leaves an empty buffer so that there is more space for storing
 possible roots while the cycle collecting mechanism is turned off.

 Performance Considerations

 Performance Considerations

 We have already mentioned in the previous section that simply collecting the
 possible roots had a very tiny performance impact, but this is when you
 compare PHP 5.2 against PHP 5.3. Although the recording of possible roots
 compared to not recording them at all, like in PHP 5.2, is slower, other
 changes to the PHP runtime in PHP 5.3 prevented this particular performance
 loss from even showing.

 There are two major areas in which performance is affected. The first
 area is reduced memory usage, and the second area is run-time delay when
 the garbage collection mechanism performs its memory cleanups. We will
 look at both of those issues.

 Reduced Memory Usage

 First of all, the whole reason for implementing the garbage collection
 mechanism is to reduce memory usage by cleaning up circular-referenced
 variables as soon as the prerequisites are fulfilled. In PHP's
 implementation, this happens as soon as the root-buffer is full, or when
 the function gc_collect_cycles() is called. In
 the graph below, we display the memory usage of the script below,
 in both PHP 5.2 and PHP 5.3, excluding the base memory that PHP
 itself uses when starting up.

 Example #1 Memory usage example

<?php
class Foo
{
 public $var = '3.14159265359';
 public $self;
}

$baseMemory = memory_get_usage();

for ($i = 0; $i <= 100000; $i++)
{
 $a = new Foo;
 $a->self = $a;
 if ($i % 500 === 0)
 {
 echo sprintf('%8d: ', $i), memory_get_usage() - $baseMemory, "\n";
 }
}
?>

 [image: Comparison of memory usage between PHP 5.2 and PHP 5.3]

 In this very academic example, we are creating an object in which a
 property is set to point back to the object itself. When the $a variable
 in the script is re-assigned in the next iteration of the loop, a memory
 leak would typically occur. In this case, two zval-containers are leaked
 (the object zval, and the property zval), but only one possible root is
 found: the variable that was unset. When the root-buffer is full after
 10,000 iterations (with a total of 10,000 possible roots), the garbage
 collection mechanism kicks in and frees the memory associated with those
 possible roots. This can very clearly be seen in the jagged memory-usage
 graph for PHP 5.3. After each 10,000 iterations, the mechanism kicks in
 and frees the memory associated with the circular referenced variables.
 The mechanism itself does not have to do a whole lot of work in this
 example, because the structure that is leaked is extremely simple. From
 the diagram, you see that the maximum memory usage in PHP 5.3 is about 9
 Mb, whereas in PHP 5.2 the memory usage keeps increasing.

 Run-Time Slowdowns

 The second area where the garbage collection mechanism influences
 performance is the time taken when the garbage collection mechanism
 kicks in to free the "leaked" memory. In order to see how much this is,
 we slightly modify the previous script to allow for a larger number of
 iterations and the removal of the intermediate memory usage figures. The
 second script is here:

 Example #2 GC performance influences

<?php
class Foo
{
 public $var = '3.14159265359';
 public $self;
}

for ($i = 0; $i <= 1000000; $i++)
{
 $a = new Foo;
 $a->self = $a;
}

echo memory_get_peak_usage(), "\n";
?>

 We will run this script two times, once with the
 zend.enable_gc setting turned
 on, and once with it turned off:

 Example #3 Running the above script

time php -dzend.enable_gc=0 -dmemory_limit=-1 -n example2.php
and
time php -dzend.enable_gc=1 -dmemory_limit=-1 -n example2.php

 On my machine, the first command seems to take consistently about 10.7
 seconds, whereas the second command takes about 11.4 seconds. This is a
 slowdown of about 7%. However, the maximum amount of memory used by the
 script is reduced by 98% from 931Mb to 10Mb. This benchmark is not very
 scientific, or even representative of real-life applications, but it
 does demonstrate the memory usage benefits that this garbage collection
 mechanism provides. The good thing is that the slowdown is always the
 same 7%, for this particular script, while the memory saving
 capabilities save more and more memory as more circular references are
 found during script execution.

 PHP's Internal GC Statistics

 It is possible to coax a little bit more information about how the
 garbage collection mechanism is run from within PHP. But in order to do
 so, you will have to re-compile PHP to enable the benchmark and
 data-collecting code. You will have to set the CFLAGS
 environment variable to -DGC_BENCH=1 prior to running
 ./configure with your desired options. The following
 sequence should do the trick:

 Example #4 Recompiling PHP to enable GC benchmarking

export CFLAGS=-DGC_BENCH=1
./config.nice
make clean
make

 When you run the above example code again with the newly built PHP
 binary, you will see the following being shown after PHP has finished
 execution:

 Example #5 GC statistics

GC Statistics

Runs: 110
Collected: 2072204
Root buffer length: 0
Root buffer peak: 10000

 Possible Remove from Marked
 Root Buffered buffer grey
 -------- -------- ----------- ------
ZVAL 7175487 1491291 1241690 3611871
ZOBJ 28506264 1527980 677581 1025731

 The most informative statistics are displayed in the first block. You
 can see here that the garbage collection mechanism ran 110 times, and in
 total, more than 2 million memory allocations were freed during those
 110 runs. As soon as the garbage collection mechanism has run at least
 one time, the "Root buffer peak" is always 10000.

 Conclusion

 In general the garbage collector in PHP will only cause a slowdown when the
 cycle collecting algorithm actually runs, whereas in normal (smaller)
 scripts there should be no performance hit at all.

 However, in the cases where the cycle collection mechanism does run for
 normal scripts, the memory reduction it will provide allows more of
 those scripts to run concurrently on your server, since not so much
 memory is used in total.

 The benefits are most apparent for longer-running scripts, such as
 lengthy test suites or daemon scripts. Also, for PHP-GTK applications
 that generally tend to run longer than scripts for the Web, the new
 mechanism should make quite a bit of a difference regarding memory leaks
 creeping in over time.

 DTrace Dynamic Tracing

 DTrace Dynamic Tracing

Table of Contents
	Introduction to PHP and DTrace
	Using PHP and DTrace
	Using SystemTap with PHP DTrace Static Probes

 Introduction to PHP and DTrace

 Introduction to PHP and DTrace

 DTrace is an always-available, low overhead, tracing framework
 available on a number of platforms including Solaris, macOS,
 Oracle Linux and BSD. DTrace can trace operating system behavior
 and user program execution. It can display argument values and be
 used to infer performance statistics. Probes are monitored by user
 created scripts written in the DTrace D scripting language. This
 allows efficient analysis of data points.

 PHP probes that are not being actively monitored by a user's DTrace
 D script do not contain instrumented code so there is no
 performance degradation during normal application execution.
 Probes that are being monitored incur an overhead low enough to
 generally allow DTrace monitoring on live production systems.

 PHP incorporates "User-level Statically Defined Tracing" (USDT)
 probes that are triggered at runtime. For example, when a D script
 is monitoring PHP's function-entry probe, then,
 every time a PHP script function is called, this probe is fired and
 the associated D script action code is executed. This action code
 could, for example, print probe arguments such as the source file
 location of the PHP function. Or the action could aggregate data
 such as the number of times each function is called.

 Only the PHP USDT probes are described here. Refer to external
 general and operating system-specific DTrace literature to see how
 DTrace can be used to trace arbitrary functions, and how it can be
 used to trace operating system behavior. Note not all DTrace
 features are available in all DTrace implementations.

 The static DTrace probes in PHP can alternatively be used with the
 SystemTap facility on some Linux distributions.

 Using PHP and DTrace

 Using PHP and DTrace

 PHP can be configured with DTrace static probes on platforms that
 support DTrace Dynamic Tracing.

 Configuring PHP for DTrace Static Probes

 Refer to external platform specific documentation for enabling
 operating system DTrace support. For example, on Oracle Linux
 boot a UEK3 kernel and do:

modprobe fasttrap
chmod 666 /dev/dtrace/helper

 Instead of using chmod, you could instead use an
 ACL package rule to limit device access to a specific user.

 Build PHP with the --enable-dtrace configuration parameter:

./configure --enable-dtrace ...
make
make install

 This enables the static probes in core PHP. Any PHP extensions
 that provide their own probes should be built separately as shared
 extensions.

 DTrace Static Probes in Core PHP

 The following static probes are available in PHP

 	Probe Name
 	Probe Description
 	Probe Arguments

 	request-startup
 	Fires when a request starts.
 	char *file, char *request_uri, char *request_method

 	request-shutdown
 	Fires when a request shutdown.
 	char *file, char *request_uri, char *request_method

 	compile-file-entry
 	Fires when the compilation of a script starts.
 	char *compile_file, char *compile_file_translated

 	compile-file-return
 	Fires when the compilation of a script finishes.
 	char *compile_file, char *compile_file_translated

 	execute-entry
 	Fires when an opcode array is to be executed. For
 example, it fires on function calls, includes, and generator
 resumes.
 	char *request_file, int lineno

 	execute-return
 	Fires after execution of an opcode array.
 	char *request_file, int lineno

 	function-entry
 	Fires when the PHP engine enters a PHP function or method call.
 	char *function_name, char *request_file, int lineno, char *classname, char *scope

 	function-return
 	Fires when the PHP engine returns from a PHP function or method call.
 	char *function_name, char *request_file, int lineno, char *classname, char *scope

 	exception-thrown
 	Fires when an exception is thrown.
 	char *classname

 	exception-caught
 	Fires when an exception is caught.
 	char *classname

 	error
 	Fires when an error occurs, regardless of the error_reporting level.
 	char *errormsg, char *request_file, int lineno

 PHP extensions may also have additional static probes.

 Listing DTrace Static Probes in PHP

 To list available probes, start a PHP process and then run:

dtrace -l

 The output will be similar to:

 ID PROVIDER MODULE FUNCTION NAME
 [. . .]
 4 php15271 php dtrace_compile_file compile-file-entry
 5 php15271 php dtrace_compile_file compile-file-return
 6 php15271 php zend_error error
 7 php15271 php ZEND_CATCH_SPEC_CONST_CV_HANDLER exception-caught
 8 php15271 php zend_throw_exception_internal exception-thrown
 9 php15271 php dtrace_execute_ex execute-entry
 10 php15271 php dtrace_execute_internal execute-entry
 11 php15271 php dtrace_execute_ex execute-return
 12 php15271 php dtrace_execute_internal execute-return
 13 php15271 php dtrace_execute_ex function-entry
 14 php15271 php dtrace_execute_ex function-return
 15 php15271 php php_request_shutdown request-shutdown
 16 php15271 php php_request_startup request-startup

 The Provider column values consist of php and
 the process id of the currently running PHP process.

 If the Apache web server is running, the module name might be, for
 example, libphp5.so, and there would be
 multiple blocks of listings, one per running Apache process.

 The Function column refers to PHP's internal C implementation
 function names where each provider is located.

 If a PHP process is not running, then no PHP probes will be shown.

 DTrace with PHP Example

 This example shows the basics of the DTrace D scripting language.

 Example #1 all_probes.d for tracing all PHP Static Probes with DTrace

#!/usr/sbin/dtrace -Zs

#pragma D option quiet

php*:::compile-file-entry
{
 printf("PHP compile-file-entry\n");
 printf(" compile_file %s\n", copyinstr(arg0));
 printf(" compile_file_translated %s\n", copyinstr(arg1));
}

php*:::compile-file-return
{
 printf("PHP compile-file-return\n");
 printf(" compile_file %s\n", copyinstr(arg0));
 printf(" compile_file_translated %s\n", copyinstr(arg1));
}

php*:::error
{
 printf("PHP error\n");
 printf(" errormsg %s\n", copyinstr(arg0));
 printf(" request_file %s\n", copyinstr(arg1));
 printf(" lineno %d\n", (int)arg2);
}

php*:::exception-caught
{
 printf("PHP exception-caught\n");
 printf(" classname %s\n", copyinstr(arg0));
}

php*:::exception-thrown
{
 printf("PHP exception-thrown\n");
 printf(" classname %s\n", copyinstr(arg0));
}

php*:::execute-entry
{
 printf("PHP execute-entry\n");
 printf(" request_file %s\n", copyinstr(arg0));
 printf(" lineno %d\n", (int)arg1);
}

php*:::execute-return
{
 printf("PHP execute-return\n");
 printf(" request_file %s\n", copyinstr(arg0));
 printf(" lineno %d\n", (int)arg1);
}

php*:::function-entry
{
 printf("PHP function-entry\n");
 printf(" function_name %s\n", copyinstr(arg0));
 printf(" request_file %s\n", copyinstr(arg1));
 printf(" lineno %d\n", (int)arg2);
 printf(" classname %s\n", copyinstr(arg3));
 printf(" scope %s\n", copyinstr(arg4));
}

php*:::function-return
{
 printf("PHP function-return\n");
 printf(" function_name %s\n", copyinstr(arg0));
 printf(" request_file %s\n", copyinstr(arg1));
 printf(" lineno %d\n", (int)arg2);
 printf(" classname %s\n", copyinstr(arg3));
 printf(" scope %s\n", copyinstr(arg4));
}

php*:::request-shutdown
{
 printf("PHP request-shutdown\n");
 printf(" file %s\n", copyinstr(arg0));
 printf(" request_uri %s\n", copyinstr(arg1));
 printf(" request_method %s\n", copyinstr(arg2));
}

php*:::request-startup
{
 printf("PHP request-startup\n");
 printf(" file %s\n", copyinstr(arg0));
 printf(" request_uri %s\n", copyinstr(arg1));
 printf(" request_method %s\n", copyinstr(arg2));
}

 This script uses the -Z option to
 dtrace, allowing it to be run when there is no
 PHP process executing. If this option were omitted the script
 would immediately terminate because it knows none of the probes to
 be monitored are in existence.

 The script traces all core PHP static probe points throughout the
 duration of a running PHP script. Run the D script:

./all_probes.d

 Run a PHP script or application. The monitoring D script will
 output each probe's arguments as it fires.

 When monitoring is complete, the D script can be terminated with a
 CTRL+C.

 On multi-CPU machines the probe ordering might not appear to be
 sequential. This depends on which CPU was processing the probes,
 and how threads migrate across CPUs. Displaying probe time stamps
 will help reduce confusion, for example:

php*:::function-entry
{
 printf("%lld: PHP function-entry ", walltimestamp);
 [. . .]
}

 See Also

 	OCI8 and DTrace Dynamic Tracing

 Using SystemTap with PHP DTrace Static Probes

 Using SystemTap with PHP DTrace Static Probes

 On some Linux distributions, the SystemTap tracing utility can be
 used to trace PHP's static DTrace probes. This is available with
 PHP 5.4.20 and PHP 5.5.

 Installing PHP with SystemTap

 Install the SystemTap SDT development package:

yum install systemtap-sdt-devel

 Install PHP with the DTrace probes enabled:

./configure --enable-dtrace ...
make

 Listing Static Probes with SystemTap

 The static probes in PHP can be listed using stap:

stap -l 'process.provider("php").mark("*")' -c 'sapi/cli/php -i'

 This outputs:

process("sapi/cli/php").provider("php").mark("compile__file__entry")
process("sapi/cli/php").provider("php").mark("compile__file__return")
process("sapi/cli/php").provider("php").mark("error")
process("sapi/cli/php").provider("php").mark("exception__caught")
process("sapi/cli/php").provider("php").mark("exception__thrown")
process("sapi/cli/php").provider("php").mark("execute__entry")
process("sapi/cli/php").provider("php").mark("execute__return")
process("sapi/cli/php").provider("php").mark("function__entry")
process("sapi/cli/php").provider("php").mark("function__return")
process("sapi/cli/php").provider("php").mark("request__shutdown")
process("sapi/cli/php").provider("php").mark("request__startup")

 SystemTap with PHP Example

 Example #1 all_probes.stp for tracing all PHP Static Probes with SystemTap

probe process("sapi/cli/php").provider("php").mark("compile__file__entry") {
 printf("Probe compile__file__entry\n");
 printf(" compile_file %s\n", user_string($arg1));
 printf(" compile_file_translated %s\n", user_string($arg2));
}
probe process("sapi/cli/php").provider("php").mark("compile__file__return") {
 printf("Probe compile__file__return\n");
 printf(" compile_file %s\n", user_string($arg1));
 printf(" compile_file_translated %s\n", user_string($arg2));
}
probe process("sapi/cli/php").provider("php").mark("error") {
 printf("Probe error\n");
 printf(" errormsg %s\n", user_string($arg1));
 printf(" request_file %s\n", user_string($arg2));
 printf(" lineno %d\n", $arg3);
}
probe process("sapi/cli/php").provider("php").mark("exception__caught") {
 printf("Probe exception__caught\n");
 printf(" classname %s\n", user_string($arg1));
}
probe process("sapi/cli/php").provider("php").mark("exception__thrown") {
 printf("Probe exception__thrown\n");
 printf(" classname %s\n", user_string($arg1));
}
probe process("sapi/cli/php").provider("php").mark("execute__entry") {
 printf("Probe execute__entry\n");
 printf(" request_file %s\n", user_string($arg1));
 printf(" lineno %d\n", $arg2);
}
probe process("sapi/cli/php").provider("php").mark("execute__return") {
 printf("Probe execute__return\n");
 printf(" request_file %s\n", user_string($arg1));
 printf(" lineno %d\n", $arg2);
}
probe process("sapi/cli/php").provider("php").mark("function__entry") {
 printf("Probe function__entry\n");
 printf(" function_name %s\n", user_string($arg1));
 printf(" request_file %s\n", user_string($arg2));
 printf(" lineno %d\n", $arg3);
 printf(" classname %s\n", user_string($arg4));
 printf(" scope %s\n", user_string($arg5));
}
probe process("sapi/cli/php").provider("php").mark("function__return") {
 printf("Probe function__return: %s\n", user_string($arg1));
 printf(" function_name %s\n", user_string($arg1));
 printf(" request_file %s\n", user_string($arg2));
 printf(" lineno %d\n", $arg3);
 printf(" classname %s\n", user_string($arg4));
 printf(" scope %s\n", user_string($arg5));
}
probe process("sapi/cli/php").provider("php").mark("request__shutdown") {
 printf("Probe request__shutdown\n");
 printf(" file %s\n", user_string($arg1));
 printf(" request_uri %s\n", user_string($arg2));
 printf(" request_method %s\n", user_string($arg3));
}
probe process("sapi/cli/php").provider("php").mark("request__startup") {
 printf("Probe request__startup\n");
 printf(" file %s\n", user_string($arg1));
 printf(" request_uri %s\n", user_string($arg2));
 printf(" request_method %s\n", user_string($arg3));
}

 The above script will trace all core PHP static probe points
 throughout the duration of a running PHP script:

stap -c 'sapi/cli/php test.php' all_probes.stp

 Function Reference

 Function Reference

 Tip

 See also Extension List/Categorization.

 	Affecting PHP's Behaviour	APCu — APC User Cache
	Componere
	Error Handling — Error Handling and Logging
	FFI — Foreign Function Interface
	OPcache
	Output Control — Output Buffering Control
	PHP Options/Info — PHP Options and Information
	phpdbg — Interactive PHP Debugger
	runkit7
	uopz — User Operations for Zend
	WinCache — Windows Cache for PHP
	Xhprof — Hierarchical Profiler
	Yac

	Audio Formats Manipulation	OpenAL — OpenAL Audio Bindings

	Authentication Services	Radius

	Command Line Specific Extensions	Readline — GNU Readline

	Compression and Archive Extensions	Bzip2
	LZF
	Phar
	Rar — Rar Archiving
	Zip
	Zlib — Zlib Compression

	Cryptography Extensions	Hash — HASH Message Digest Framework
	Mcrypt
	Mhash
	OpenSSL
	Password Hashing
	Rnp
	Sodium

	Database Extensions	Abstraction Layers
	Vendor Specific Database Extensions

	Date and Time Related Extensions	Calendar
	Date/Time — Date and Time
	HRTime — High resolution timing

	File System Related Extensions	Direct IO
	Directories
	Fileinfo — File Information
	Filesystem
	Inotify
	xattr
	xdiff

	Human Language and Character Encoding Support	Enchant — Enchant spelling library
	Gender — Determine gender of firstnames
	Gettext
	iconv
	intl — Internationalization Functions
	Multibyte String
	Pspell
	Recode — GNU Recode

	Image Processing and Generation	Exif — Exchangeable image information
	GD — Image Processing and GD
	Gmagick
	ImageMagick — Image Processing (ImageMagick)

	Mail Related Extensions	IMAP — IMAP, POP3 and NNTP
	Mail
	Mailparse

	Mathematical Extensions	BC Math — BCMath Arbitrary Precision Mathematics
	GMP — GNU Multiple Precision
	Math — Mathematical Functions
	Statistics
	Trader — Technical Analysis for Traders

	Non-Text MIME Output	FDF — Forms Data Format
	GnuPG — GNU Privacy Guard
	wkhtmltox
	PS — PostScript document creation
	RpmInfo
	XLSWriter

	Process Control Extensions	Eio
	Ev
	Expect
	PCNTL — Process Control
	POSIX
	Program execution — System program execution
	parallel
	pthreads
	Semaphore — Semaphore, Shared Memory and IPC
	Shared Memory
	Sync

	Other Basic Extensions	GeoIP — Geo IP Location
	FANN — FANN (Fast Artificial Neural Network)
	Igbinary
	JSON — JavaScript Object Notation
	Simdjson
	Lua
	LuaSandbox
	Misc. — Miscellaneous Functions
	Random — Random Number Generators and Functions Related to Randomness
	Seaslog
	SPL — Standard PHP Library (SPL)
	Streams
	Swoole
	Tidy
	Tokenizer
	URLs
	V8js — V8 Javascript Engine Integration
	Yaml — YAML Data Serialization
	Yaf — Yet Another Framework
	Yaconf
	Taint
	Data Structures
	var_representation

	Other Services	cURL — Client URL Library
	Event
	FTP
	Gearman
	LDAP — Lightweight Directory Access Protocol
	Memcache
	Memcached
	mqseries
	Network
	RRD — RRDtool
	ScoutAPM
	SNMP
	Sockets
	SSH2 — Secure Shell2
	Stomp — Stomp Client
	SVM — Support Vector Machine
	SVN — Subversion
	TCP — TCP Wrappers
	Varnish
	YAZ
	0MQ messaging — ZMQ
	ZooKeeper

	Search Engine Extensions	Solr — Apache Solr

	Server Specific Extensions	Apache
	FastCGI Process Manager

	Session Extensions	Sessions — Session Handling

	Text Processing	CommonMark
	Parle — Parsing and lexing
	PCRE — Regular Expressions (Perl-Compatible)
	ssdeep — ssdeep Fuzzy Hashing
	Strings

	Variable and Type Related Extensions	Arrays
	Classes/Objects — Class/Object Information
	Ctype — Character type checking
	Filter — Data Filtering
	Function Handling
	Quickhash
	Reflection
	Variable handling

	Web Services	OAuth
	SOAP
	Yar — Yet Another RPC Framework
	XML-RPC

	Windows Only Extensions	COM — COM and .Net (Windows)
	win32service

	XML Manipulation	DOM — Document Object Model
	libxml
	SimpleXML
	WDDX
	XMLDiff — XML diff and merge
	XML Parser
	XMLReader
	XMLWriter
	XSL

	GUI Extensions	UI

 Affecting PHP's Behaviour

 Affecting PHP's Behaviour

 	APCu — APC User Cache	Introduction
	Installing/Configuring
	Predefined Constants
	APCu Functions
	APCUIterator — The APCUIterator class

	Componere	Introduction
	Installing/Configuring
	Componere\Abstract\Definition — The Componere\Abstract\Definition class
	Componere\Definition — The Componere\Definition class
	Componere\Patch — The Componere\Patch class
	Componere\Method — The Componere\Method class
	Componere\Value — The Componere\Value class
	Componere Functions

	Error Handling — Error Handling and Logging	Introduction
	Installing/Configuring
	Predefined Constants
	Examples
	Error Handling Functions

	FFI — Foreign Function Interface	Introduction
	Installing/Configuring
	Predefined Constants
	Examples
	FFI — Main interface to C code and data
	FFI\CData — C Data Handles
	FFI\CType — C Type Handles
	FFI\Exception — FFI Exceptions
	FFI\ParserException — FFI Parser Exceptions

	OPcache	Introduction
	Installing/Configuring
	Preloading
	OPcache Functions

	Output Control — Output Buffering Control	Introduction
	Installing/Configuring
	Predefined Constants
	Output Buffering
	Flushing System Buffers
	User-Level Output Buffers
	Examples
	Output Control Functions

	PHP Options/Info — PHP Options and Information	Introduction
	Installing/Configuring
	Predefined Constants
	PHP Options/Info Functions

	phpdbg — Interactive PHP Debugger	Introduction
	Installing/Configuring
	Predefined Constants
	phpdbg Functions

	runkit7	Introduction
	Installing/Configuring
	Predefined Constants
	runkit7 Functions

	uopz — User Operations for Zend	Introduction
	Installing/Configuring
	Predefined Constants
	Uopz Functions

	WinCache — Windows Cache for PHP	Introduction
	Installing/Configuring
	Predefined Constants
	WinCache Functions
	Building for Windows

	Xhprof — Hierarchical Profiler	Introduction
	Installing/Configuring
	Predefined Constants
	Examples
	Xhprof Functions

	Yac	Introduction
	Installing/Configuring
	Predefined Constants
	Yac — The Yac class

 APC User Cache

 APC User Cache

	Introduction
	Installing/Configuring	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	APCu Functions	apcu_add — Cache a new variable in the data store
	apcu_cache_info — Retrieves cached information from APCu's data store
	apcu_cas — Updates an old value with a new value
	apcu_clear_cache — Clears the APCu cache
	apcu_dec — Decrease a stored number
	apcu_delete — Removes a stored variable from the cache
	apcu_enabled — Whether APCu is usable in the current environment
	apcu_entry — Atomically fetch or generate a cache entry
	apcu_exists — Checks if entry exists
	apcu_fetch — Fetch a stored variable from the cache
	apcu_inc — Increase a stored number
	apcu_key_info — Get detailed information about the cache key
	apcu_sma_info — Retrieves APCu Shared Memory Allocation information
	apcu_store — Cache a variable in the data store

	APCUIterator — The APCUIterator class	APCUIterator::__construct — Constructs an APCUIterator iterator object
	APCUIterator::current — Get current item
	APCUIterator::getTotalCount — Get total count
	APCUIterator::getTotalHits — Get total cache hits
	APCUIterator::getTotalSize — Get total cache size
	APCUIterator::key — Get iterator key
	APCUIterator::next — Move pointer to next item
	APCUIterator::rewind — Rewinds iterator
	APCUIterator::valid — Checks if current position is valid

 Introduction

 Introduction

 APCu is an in-memory key-value store for PHP.
 Keys are of type string and values can be any PHP variables.
 APCu only supports userland caching of variables.

 The APCu cache is per-process on Windows, so when using a process-based
 (rather than thread-based) SAPI, it will not be shared between different processes.

 APCu is APC stripped of opcode caching.

 The first APCu codebase was versioned 4.0.0, it was forked from the head of the APC master branch at the time.
 PHP 7 support is available as of APCu 5.0.0. PHP 8 support is available as of APCu 5.1.19.

 Installing/Configuring

 Installing/Configuring

Table of Contents
	Requirements
	Installation
	Runtime Configuration
	Resource Types

 Requirements

 Requirements

 No external libraries are needed to build this extension.

 Installation

 Installation

 Information for installing this PECL extension may be
found in the manual chapter titled Installation
of PECL extensions. Additional information such as new releases,
downloads, source files, maintainer information, and a CHANGELOG, can be
located here:
 https://pecl.php.net/package/apcu.

 Tip

 PHP 7 has a separate module (apcu-bc) for backwards compatibility with APC.

 In backward compatibility mode, APCu registers the applicable APC functions
 with backward compatible prototypes.

 Where an APC function accepted cache_type, it is simply
 ignored by the backward compatible version, and omitted from the prototype for
 the APCu version.

 Warning

 As of PHP 8.0.0, apcu-bc is no longer supported.

 Note:

 On Windows, APCu needs a temp path to exist, and be
 writable by the web server. It checks the TMP, TEMP
 and USERPROFILE environment variables in that order
 and finally tries the WINDOWS directory if none of
 those are set.

 Note:

 For more in-depth, highly technical implementation details, see the

 developer-supplied TECHNOTES file
 .

 APCu sources can be found here.

 Runtime Configuration

 Runtime Configuration

The behaviour of these functions is affected by settings in php.ini.

 Although the default APCu settings are fine for many installations, serious
 users should consider tuning the following parameters.

 There is one decision to be made configuring APCu.
 How much memory is going to be allocated to APCu.
 The ini directive that controls this is apc.shm_size
 Read the sections on this carefully below.

 Once the server is running, the apc.php script that
 is bundled with the extension should be copied somewhere into the docroot and
 viewed with a browser as it provides a detailed analysis of the internal
 workings of APCu. If GD is enabled in PHP, it will even display some
 interesting graphs.

 If APCu is working, the Cache full count
 number (on the left) will display the number of times the cache
 has reached maximum capacity and has had to evict entries to free up memory.
 During eviction, if apc.ttl was specified, APCu will first
 attempt to remove expired entries, i.e. entries whose TTL has either expired,
 or entries that have no TTL set and haven't been accessed in the last
 apc.ttl seconds. If apc.ttl was not set,
 or removing expired entries did not free up enough space, APCu will clear the
 entire cache.

 The number of evictions should be minimal in a well-configured cache. If the
 cache is constantly being filled, and thusly forcefully freed, the resulting
 churning will have disparaging effects on script performance. The easiest way
 to minimize this number is to allocate more memory for APCu.

 When APCu is compiled with mmap support (Memory Mapping), it will use only one
 memory segment, unlike when APCu is built with SHM (SysV Shared Memory) support
 that uses multiple memory segments. MMAP does not have a maximum limit like SHM
 does in /proc/sys/kernel/shmmax. In general MMAP support is
 recommended because it will reclaim the memory faster when the webserver is
 restarted and all in all reduces memory allocation impact at startup.

 APCu configuration options

 	Name
 	Default
 	Changeable
 	Changelog

 	apc.enabled
 	"1"
 	INI_SYSTEM
 	

 	apc.shm_segments
 	"1"
 	INI_SYSTEM
 	

 	apc.shm_size
 	"32M"
 	INI_SYSTEM
 	

 	apc.entries_hint
 	"4096"
 	INI_SYSTEM
 	

 	apc.ttl
 	"0"
 	INI_SYSTEM
 	

 	apc.gc_ttl
 	"3600"
 	INI_SYSTEM
 	

 	apc.mmap_file_mask
 	NULL
 	INI_SYSTEM
 	

 	apc.slam_defense
 	"1"
 	INI_SYSTEM
 	

 	apc.enable_cli
 	"0"
 	INI_SYSTEM
 	

 	apc.use_request_time
 	"0"
 	INI_ALL
 	Prior to APCu 5.1.19, the default was "1".

 	apc.serializer
 	"php"
 	INI_SYSTEM
 	Prior to APCu 5.1.15, the default was "default".

 	apc.coredump_unmap
 	"0"
 	INI_SYSTEM
 	

 	apc.preload_path
 	NULL
 	INI_SYSTEM
 	

 For further details and definitions of the
INI_* modes, see the Where a configuration setting may be set.

 Here's a short explanation of
the configuration directives.

 	
 apc.enabled
 bool

 	

 apc.enabled can be set to 0 to disable APC. This is
 primarily useful when APC is statically compiled
 into PHP, since there is no other way to disable
 it (when compiled as a DSO, the extension
 line in php.ini can just be commented-out).

 	
 apc.shm_segments
 int

 	

 The number of shared memory segments to allocate
 for the compiler cache. If APC is running out of
 shared memory but apc.shm_size
 is set as high as the system allows, raising
 this value might prevent APC from exhausting its memory.

 	
 apc.shm_size
 string

 	

 The size of each shared memory segment given by a shorthand notation as
 described in this FAQ.
 By default, some systems (including most BSD
 variants) have very low limits on the size of a
 shared memory segment.

 	
 apc.entries_hint
 int

 	

 A "hint" about the number of distinct variables that might be stored.
 Set to zero or omit if not sure.

 	
 apc.ttl
 int

 	

 Consider cache entries without an explicit TTL to be
 expired if they have not been accessed in this many
 seconds. Effectively, this allows such entries to be
 removed opportunistically during a cache insert, or
 prior to a full expunge. Note that because removal is
 opportunistic, entries can still be readable even if
 they are older than apc.ttl seconds.
 This setting has no effect on cache entries that have
 an explicit TTL specified.

 	
 apc.gc_ttl
 int

 	

 The number of seconds that a cache entry may
 remain on the garbage-collection list. This value
 provides a fail-safe in the event that a server
 process dies while executing a cached source file;
 if that source file is modified, the memory
 allocated for the old version will not be
 reclaimed until this TTL reached. Set to zero to
 disable this feature.

 	
 apc.mmap_file_mask
 string

 	

 If compiled with MMAP support by using --enable-mmap
 this is the mktemp-style file_mask to pass to the
 mmap module for determining whether your mmap'ed memory
 region is going to be file-backed or shared memory
 backed. For straight file-backed mmap, set it to
 something like /tmp/apc.XXXXXX
 (exactly 6 Xs).
 To use POSIX-style shm_open/mmap put a .shm
 somewhere in your mask. e.g. /apc.shm.XXXXXX
 You can also set it to /dev/zero to use your
 kernel's /dev/zero interface to anonymous mmap'ed
 memory. Leaving it undefined will force an anonymous mmap.

 	
 apc.slam_defense
 int

 	

 On very busy servers whenever you start the server or
 modify files you can create a race of many processes
 all trying to cache the same file at the same time.
 This option sets the percentage of processes that will
 skip trying to cache an uncached file. Or think of it
 as the probability of a single process to skip caching.
 For example, setting apc.slam_defense
 to 75 would mean that there is
 a 75% chance that the process will not cache an uncached
 file. So, the higher the setting the greater the defense
 against cache slams. Setting this to 0
 disables this feature.

 	
 apc.enable_cli
 int

 	

 Mostly for testing and debugging. Setting this enables APC
 for the CLI version of PHP. Under normal circumstances, it is
 not ideal to create, populate and destroy the APC cache on every
 CLI request, but for various test scenarios it is useful to be
 able to enable APC for the CLI version of PHP easily.

 	
 apc.serializer
 string

 	

 Used to configure APC to use a third party serializer.

 	
 apc.coredump_unmap
 bool

 	

 Enables APC handling of signals, such as SIGSEGV, that write
 core files when signaled. When these signals are received,
 APC will attempt to unmap the shared memory segment in order
 to exclude it from the core file. This setting may improve
 system stability when fatal signals are received and a large
 APC shared memory segment is configured.

 Warning

 This feature is potentially dangerous. Unmapping the shared
 memory segment in a fatal signal handler may cause undefined
 behaviour if a fatal error occurs.

 Note:

 Although some kernels may provide a facility to ignore various
 types of shared memory when generating a core dump file, these
 implementations may also ignore important shared memory segments
 such as the Apache scoreboard.

 	
 apc.preload_path
 string

 	

 Optionally, set a path to the directory that APC will load
 cache data at startup.

 	
 apc.use_request_time
 bool

 	

 Use the SAPI request start time for
 TTL.

 Resource Types

 Resource Types

 This extension has no resource types defined.

 Predefined Constants

 Predefined Constants

The constants below are defined by this extension, and
will only be available when the extension has either
been compiled into PHP or dynamically loaded at runtime.

 	
 APC_ITER_ALL
 (int)

 	

 	
 APC_ITER_ATIME
 (int)

 	

 	
 APC_ITER_CTIME
 (int)

 	

 	
 APC_ITER_DEVICE
 (int)

 	

 	
 APC_ITER_DTIME
 (int)

 	

 	
 APC_ITER_FILENAME
 (int)

 	

 	
 APC_ITER_INODE
 (int)

 	

 	
 APC_ITER_KEY
 (int)

 	

 	
 APC_ITER_MD5
 (int)

 	

 	
 APC_ITER_MEM_SIZE
 (int)

 	

 	
 APC_ITER_MTIME
 (int)

 	

 	
 APC_ITER_NONE
 (int)

 	

 	
 APC_ITER_NUM_HITS
 (int)

 	

 	
 APC_ITER_REFCOUNT
 (int)

 	

 	
 APC_ITER_TTL
 (int)

 	

 	
 APC_ITER_TYPE
 (int)

 	

 	
 APC_ITER_VALUE
 (int)

 	

 	
 APC_LIST_ACTIVE
 (int)

 	

 	
 APC_LIST_DELETED
 (int)

 	

 APCu Functions

 APCu Functions

Table of Contents
	apcu_add — Cache a new variable in the data store
	apcu_cache_info — Retrieves cached information from APCu's data store
	apcu_cas — Updates an old value with a new value
	apcu_clear_cache — Clears the APCu cache
	apcu_dec — Decrease a stored number
	apcu_delete — Removes a stored variable from the cache
	apcu_enabled — Whether APCu is usable in the current environment
	apcu_entry — Atomically fetch or generate a cache entry
	apcu_exists — Checks if entry exists
	apcu_fetch — Fetch a stored variable from the cache
	apcu_inc — Increase a stored number
	apcu_key_info — Get detailed information about the cache key
	apcu_sma_info — Retrieves APCu Shared Memory Allocation information
	apcu_store — Cache a variable in the data store

 Cache a new variable in the data store

 apcu_add

 (PECL apcu >= 4.0.0)
apcu_add
 Cache a new variable in the data store

 Description

 apcu_add(string $key, mixed $var, int $ttl = 0): bool

 apcu_add(array $values, mixed $unused = NULL, int $ttl = 0): array

 Caches a variable in the data store, only if it's not already stored.

 Note:

 Unlike many other mechanisms in PHP, variables stored using
 apcu_add() will persist between requests (until the
 value is removed from the cache).

 Parameters

 	key

 	

 Store the variable using this name. keys are
 cache-unique, so attempting to use apcu_add() to
 store data with a key that already exists will not overwrite the
 existing data, and will instead return false. (This is the only
 difference between apcu_add() and
 apcu_store().)

 	var

 	

 The variable to store

 	ttl

 	

 Time To Live; store var in the cache for
 ttl seconds. After the
 ttl has passed, the stored variable will be
 expunged from the cache (on the next request). If no ttl
 is supplied (or if the ttl is
 0), the value will persist until it is removed from
 the cache manually, or otherwise fails to exist in the cache (clear,
 restart, etc.).

 	values

 	

 Names in key, variables in value.

 Return Values

 Returns TRUE if something has effectively been added into the cache, FALSE otherwise.
 Second syntax returns array with error keys.

 Examples

 Example #1 A apcu_add() example

<?php
$bar = 'BAR';
apcu_add('foo', $bar);
var_dump(apcu_fetch('foo'));
echo "\n";
$bar = 'NEVER GETS SET';
apcu_add('foo', $bar);
var_dump(apcu_fetch('foo'));
echo "\n";
?>

 The above example will output:

string(3) "BAR"
string(3) "BAR"

 See Also

 	apcu_store() - Cache a variable in the data store

 	apcu_fetch() - Fetch a stored variable from the cache

 	apcu_delete() - Removes a stored variable from the cache

 Retrieves cached information from APCu's data store

 apcu_cache_info

 (PECL apcu >= 4.0.0)
apcu_cache_info
 Retrieves cached information from APCu's data store

 Description

 apcu_cache_info(bool $limited = false): array|false

 Retrieves cached information and meta-data from APC's data store.

 Parameters

 	limited

 	

 If limited is true, the
 return value will exclude the individual list of cache entries. This
 is useful when trying to optimize calls for statistics gathering.

 Return Values

 Array of cached data (and meta-data) or false on failure

 Note:

 apcu_cache_info() will raise a warning if it is unable to
 retrieve APC cache data. This typically occurs when APC is not enabled.

 Changelog

 	Version
 	Description

 	PECL apcu 3.0.11
 	
 The limited parameter was introduced.

 	PECL apcu 3.0.16
 	
 The "filehits" option for the
 cache_type parameter was introduced.

 Examples

 Example #1 A apcu_cache_info() example

<?php
print_r(apcu_cache_info());
?>

 The above example will output
something similar to:

Array
(
 [num_slots] => 2000
 [ttl] => 0
 [num_hits] => 9
 [num_misses] => 3
 [start_time] => 1123958803
 [cache_list] => Array
 (
 [0] => Array
 (
 [filename] => /path/to/apcu_test.php
 [device] => 29954
 [inode] => 1130511
 [type] => file
 [num_hits] => 1
 [mtime] => 1123960686
 [creation_time] => 1123960696
 [deletion_time] => 0
 [access_time] => 1123962864
 [ref_count] => 1
 [mem_size] => 677
)
 [1] => Array (...iterates for each cached file)
)

 See Also

 	APCu configuration directives

 	APCUIterator::getTotalSize() - Get total cache size

 	APCUIterator::getTotalHits() - Get total cache hits

 	APCUIterator::getTotalCount() - Get total count

 Updates an old value with a new value

 apcu_cas

 (PECL apcu >= 4.0.0)
apcu_cas Updates an old value with a new value

 Description

 apcu_cas(string $key, int $old, int $new): bool

 apcu_cas() updates an already existing integer value if the
 old parameter matches the currently stored value
 with the value of the new parameter.

 Parameters

 	key

 	

 The key of the value being updated.

 	old

 	

 The old value (the value currently stored).

 	new

 	

 The new value to update to.

 Return Values

 Returns true on success or false on failure.

 Examples

 Example #1 apcu_cas() example

<?php
apcu_store('foobar', 2);
echo '$foobar = 2', PHP_EOL;
echo '$foobar == 1 ? 2 : 1 = ', (apcu_cas('foobar', 1, 2) ? 'ok' : 'fail'), PHP_EOL;
echo '$foobar == 2 ? 1 : 2 = ', (apcu_cas('foobar', 2, 1) ? 'ok' : 'fail'), PHP_EOL;

echo '$foobar = ', apcu_fetch('foobar'), PHP_EOL;

echo '$f__bar == 1 ? 2 : 1 = ', (apcu_cas('f__bar', 1, 2) ? 'ok' : 'fail'), PHP_EOL;

apcu_store('perfection', 'xyz');
echo '$perfection == 2 ? 1 : 2 = ', (apcu_cas('perfection', 2, 1) ? 'ok' : 'epic fail'), PHP_EOL;

echo '$foobar = ', apcu_fetch('foobar'), PHP_EOL;
?>

 The above example will output
something similar to:

$foobar = 2
$foobar == 1 ? 2 : 1 = fail
$foobar == 2 ? 1 : 2 = ok
$foobar = 1
$f__bar == 1 ? 2 : 1 = fail
$perfection == 2 ? 1 : 2 = epic fail
$foobar = 1

 See Also

 	apcu_dec() - Decrease a stored number

 	apcu_store() - Cache a variable in the data store

 Clears the APCu cache

 apcu_clear_cache

 (PECL apcu >= 4.0.0)
apcu_clear_cache
 Clears the APCu cache

 Description

 apcu_clear_cache(): bool

 Clears the cache.

 Parameters

 This function has no parameters.

 Return Values

 Returns true always

 See Also

 	apcu_cache_info() - Retrieves cached information from APCu's data store

 Decrease a stored number

 apcu_dec

 (PECL apcu >= 4.0.0)
apcu_dec Decrease a stored number

 Description

 apcu_dec(string $key,int $step = 1,bool

 Removes a stored variable from the cache

 apcu_delete

 (PECL apcu >= 4.0.0)
apcu_delete
 Removes a stored variable from the cache

 Description

 apcu_delete(mixed $key): mixed

 Removes a stored variable from the cache.

 Parameters

 	key

 	

 A key used to store the value as a
 string for a single key,
 or as an array of strings for several keys,
 or as an APCUIterator object.

 Return Values

 If key is an array, an indexed array of the keys is returned.
 Otherwise true is returned on success, or false on failure.

 Examples

 Example #1 A apcu_delete() example

<?php
$bar = 'BAR';
apcu_store('foo', $bar);
apcu_delete('foo');
// this is obviously useless in this form

// Alternatively delete multiple keys.
apcu_delete(['foo', 'bar', 'baz']);

// Or use an Iterator with a regular expression.
apcu_delete(new APCUIterator('#^myprefix_#'));
?>

 See Also

 	apcu_store() - Cache a variable in the data store

 	apcu_fetch() - Fetch a stored variable from the cache

 	apcu_clear_cache() - Clears the APCu cache

 	APCUIterator

 Whether APCu is usable in the current environment

 apcu_enabled

 (PECL apcu >= 4.0.3)
apcu_enabled Whether APCu is usable in the current environment

 Description

 apcu_enabled(): bool

 Returns whether APCu is usable in the current environment.

 Parameters

 This function has no parameters.

 Return Values

 Returns true when APCu is usable in the current environment, false otherwise.

 Atomically fetch or generate a cache entry

 apcu_entry

 (PECL apcu >= 5.1.0)
apcu_entry
 Atomically fetch or generate a cache entry

 Description

 apcu_entry(string $key, callable $generator, int $ttl = 0): mixed

 Atomically attempts to find key in the cache, if it cannot be found generator
 is called, passing key as the only argument. The return value of the call is then cached with the optionally specified
 ttl, and returned.

 Note:

 When control enters apcu_entry() the lock for the cache is acquired exclusively, it is released when control leaves apcu_entry():
 In effect, this turns the body of generator into a critical section, disallowing two processes from executing the same code paths concurrently.
 In addition, it prohibits the concurrent execution of any other APCu functions, since they will acquire the same lock.

 Warning

 The only APCu function that can be called safely by generator is apcu_entry().

 Parameters

 	key

 	

 Identity of cache entry

 	generator

 	

 A callable that accepts key as the only argument and returns the value to cache.

 	ttl

 	

 Time To Live; store var in the cache for
 ttl seconds. After the
 ttl has passed, the stored variable will be
 expunged from the cache (on the next request). If no ttl
 is supplied (or if the ttl is
 0), the value will persist until it is removed from
 the cache manually, or otherwise fails to exist in the cache (clear,
 restart, etc.).

 Return Values

 Returns the cached value

 Examples

 Example #1 An apcu_entry() example

<?php
$config = apcu_entry("config", function($key) {
 return [
 "fruit" => apcu_entry("config.fruit", function($key){
 return [
 "apples",
 "pears"
];
 }),
 "people" => apcu_entry("config.people", function($key){
 return [
 "bob",
 "joe",
 "niki"
];
 })
];
});

var_dump($config);
?>

 The above example will output:

array(2) {
 ["fruit"]=>
 array(2) {
 [0]=>
 string(6) "apples"
 [1]=>
 string(5) "pears"
 }
 ["people"]=>
 array(3) {
 [0]=>
 string(3) "bob"
 [1]=>
 string(3) "joe"
 [2]=>
 string(4) "niki"
 }
}

 See Also

 	apcu_store() - Cache a variable in the data store

 	apcu_fetch() - Fetch a stored variable from the cache

 	apcu_delete() - Removes a stored variable from the cache

 Checks if entry exists

 apcu_exists

 (PECL apcu >= 4.0.0)
apcu_exists Checks if entry exists

 Description

 apcu_exists(mixed $keys): mixed

 Checks if one or more APCu entries exist.

 Parameters

 	keys

 	

 A string, or an array of strings, that
 contain keys.

 Return Values

 Returns true if the key exists, otherwise false Or if an
 array was passed to keys, then
 an array is returned that contains all existing keys, or an empty
 array if none exist.

 Examples

 Example #1 apcu_exists() example

<?php
$fruit = 'apple';
$veggie = 'carrot';

apcu_store('foo', $fruit);
apcu_store('bar', $veggie);

if (apcu_exists('foo')) {
 echo "Foo exists: ";
 echo apcu_fetch('foo');
} else {
 echo "Foo does not exist";
}

echo PHP_EOL;
if (apcu_exists('baz')) {
 echo "Baz exists.";
} else {
 echo "Baz does not exist";
}

echo PHP_EOL;

$ret = apcu_exists(array('foo', 'donotexist', 'bar'));
var_dump($ret);

?>

 The above example will output
something similar to:

Foo exists: apple
Baz does not exist
array(2) {
 ["foo"]=>
 bool(true)
 ["bar"]=>
 bool(true)
}

 See Also

 	apcu_cache_info() - Retrieves cached information from APCu's data store

 	apcu_fetch() - Fetch a stored variable from the cache

 Fetch a stored variable from the cache

 apcu_fetch

 (PECL apcu >= 4.0.0)
apcu_fetch
 Fetch a stored variable from the cache

 Description

 apcu_fetch(mixed $key, bool

 Increase a stored number

 apcu_inc

 (PECL apcu >= 4.0.0)
apcu_inc Increase a stored number

 Description

 apcu_inc(string $key,int $step = 1,bool

 Get detailed information about the cache key

 apcu_key_info

 (No version information available, might only be in Git)
apcu_key_info
 Get detailed information about the cache key

 Description

 apcu_key_info(string $key): ?array

 Get detailed information about the cache key

 Parameters

 	key

 	

 Get detailed information about the cache key

 Return Values

 An array containing the detailed information about the cache key, or null if the key does not exist.

 Examples

 Example #1 A apcu_key_info() example

<?php
apcu_add('a','b');
var_dump(apcu_key_info('a'));
?>

 The above example will output:

array(7) {
 ["hits"]=>
 int(0)
 ["access_time"]=>
 int(1606701783)
 ["mtime"]=>
 int(1606701783)
 ["creation_time"]=>
 int(1606701783)
 ["deletion_time"]=>
 int(0)
 ["ttl"]=>
 int(0)
 ["refs"]=>
 int(0)
}

 See Also

 	apcu_store() - Cache a variable in the data store

 	apcu_fetch() - Fetch a stored variable from the cache

 	apcu_delete() - Removes a stored variable from the cache

 Retrieves APCu Shared Memory Allocation information

 apcu_sma_info

 (PECL apcu >= 4.0.0)
apcu_sma_info
 Retrieves APCu Shared Memory Allocation information

 Description

 apcu_sma_info(bool $limited = false): array|false

 Retrieves APCu Shared Memory Allocation information.

 Parameters

 	limited

 	

 When set to false (default) apcu_sma_info() will
 return a detailed information about each segment.

 Return Values

 Array of Shared Memory Allocation data; false on failure.

 Examples

 Example #1 A apcu_sma_info() example

<?php
print_r(apcu_sma_info());
?>

 The above example will output
something similar to:

Array
(
 [num_seg] => 1
 [seg_size] => 31457280
 [avail_mem] => 31448408
 [block_lists] => Array
 (
 [0] => Array
 (
 [0] => Array
 (
 [size] => 31448408
 [offset] => 8864
)

)

)

)

 See Also

 	
 APCu configuration directives

 Cache a variable in the data store

 apcu_store

 (PECL apcu >= 4.0.0)
apcu_store
 Cache a variable in the data store

 Description

 apcu_store(string $key, mixed $var, int $ttl = 0): bool

 apcu_store(array $values, mixed $unused = NULL, int $ttl = 0): array

 Cache a variable in the data store.

 Note:

 Unlike many other mechanisms in PHP, variables stored using
 apcu_store() will persist between requests (until the
 value is removed from the cache).

 Parameters

 	key

 	

 Store the variable using this name. keys are
 cache-unique, so storing a second value with the same
 key will overwrite the original value.

 	var

 	

 The variable to store

 	ttl

 	

 Time To Live; store var in the cache for
 ttl seconds. After the
 ttl has passed, the stored variable will be
 expunged from the cache (on the next request). If no ttl
 is supplied (or if the ttl is
 0), the value will persist until it is removed from
 the cache manually, or otherwise fails to exist in the cache (clear,
 restart, etc.).

 	values

 	

 Names in key, variables in value.

 Return Values

 Returns true on success or false on failure.
 Second syntax returns array with error keys.

 Examples

 Example #1 A apcu_store() example

<?php
$bar = 'BAR';
apcu_store('foo', $bar);
var_dump(apcu_fetch('foo'));
?>

 The above example will output:

string(3) "BAR"

 See Also

 	apcu_add() - Cache a new variable in the data store

 	apcu_fetch() - Fetch a stored variable from the cache

 	apcu_delete() - Removes a stored variable from the cache

 The APCUIterator class

 The APCUIterator class

 (PECL apcu >= 5.0.0)

 Introduction

 The APCUIterator class makes it easier to iterate
 over large APCu caches. This is helpful as it allows iterating over large
 caches in steps, while grabbing a defined number of entries per lock instance,
 so it frees the cache locks for other activities rather than hold up the
 entire cache to grab 100 (the default) entries. Also, using regular expression
 matching is more efficient as it's been moved to the C level.

 Class synopsis

 class APCUIterator

 implements
 Iterator {

 /* Methods */

 public __construct(array|string|null $search = null,int $format = APC_ITER_ALL,int $chunk_size = 100,int $list = APC_LIST_ACTIVE)

 Constructs an APCUIterator iterator object

 APCUIterator::__construct

 (PECL apcu >= 5.0.0)
APCUIterator::__construct Constructs an APCUIterator iterator object

 Description

 public APCUIterator::__construct(array|string|null $search = null,int $format = APC_ITER_ALL,int $chunk_size = 100,int $list = APC_LIST_ACTIVE)

 Get current item

 APCUIterator::current

 (PECL apcu >= 5.0.0)
APCUIterator::current Get current item

 Description

 public APCUIterator::current(): mixed

 Gets the current item from the APCUIterator stack.

 Parameters

 This function has no parameters.

 Return Values

 Returns the current item on success, or false if no
 more items or exist, or on failure.

 See Also

 	APCUIterator::next() - Move pointer to next item

 	Iterator::current() - Return the current element

 Get total count

 APCUIterator::getTotalCount

 (PECL apcu >= 5.0.0)
APCUIterator::getTotalCount Get total count

 Description

 public APCUIterator::getTotalCount(): int

 Get the total count.

 WarningThis function is
currently not documented; only its argument list is available.

 Parameters

 This function has no parameters.

 Return Values

 The total count.

 See Also

 	APCUIterator::getTotalHits() - Get total cache hits

 	APCUIterator::getTotalSize() - Get total cache size

 	apcu_cache_info() - Retrieves cached information from APCu's data store

 Get total cache hits

 APCUIterator::getTotalHits

 (PECL apcu >= 5.0.0)
APCUIterator::getTotalHits Get total cache hits

 Description

 public APCUIterator::getTotalHits(): int

 Gets the total number of cache hits.

 WarningThis function is
currently not documented; only its argument list is available.

 Parameters

 This function has no parameters.

 Return Values

 The number of hits on success, or false on failure.

 See Also

 	APCUIterator::getTotalCount() - Get total count

 	APCUIterator::getTotalSize() - Get total cache size

 	apcu_cache_info() - Retrieves cached information from APCu's data store

 Get total cache size

 APCUIterator::getTotalSize

 (PECL apcu >= 5.0.0)
APCUIterator::getTotalSize Get total cache size

 Description

 public APCUIterator::getTotalSize(): int

 Gets the total cache size.

 WarningThis function is
currently not documented; only its argument list is available.

 Parameters

 This function has no parameters.

 Return Values

 The total cache size.

 See Also

 	APCUIterator::getTotalCount() - Get total count

 	APCUIterator::getTotalHits() - Get total cache hits

 	apc_cache_info()

 Get iterator key

 APCUIterator::key

 (PECL apcu >= 5.0.0)
APCUIterator::key Get iterator key

 Description

 public APCUIterator::key(): string

 Gets the current iterator key.

 Parameters

 This function has no parameters.

 Return Values

 Returns the key on success, or false upon failure.

 See Also

 	APCUIterator::current() - Get current item

 	Iterator::key() - Return the key of the current element

 Move pointer to next item

 APCUIterator::next

 (PECL apcu >= 5.0.0)
APCUIterator::next Move pointer to next item

 Description

 public APCUIterator::next(): bool

 Moves the iterator pointer to the next element.

 Parameters

 This function has no parameters.

 Return Values

 Returns true on success or false on failure.

 See Also

 	APCUIterator::current() - Get current item

 	APCUIterator::rewind() - Rewinds iterator

 	Iterator::next() - Move forward to next element

 Rewinds iterator

 APCUIterator::rewind

 (PECL apcu >= 5.0.0)
APCUIterator::rewind Rewinds iterator

 Description

 public APCUIterator::rewind(): void

 Rewinds back the iterator to the first element.

 Parameters

 This function has no parameters.

 Return Values

 No value is returned.

 See Also

 	APCUIterator::next() - Move pointer to next item

 	Iterator::next() - Move forward to next element

 Checks if current position is valid

 APCUIterator::valid

 (PECL apcu >= 5.0.0)
APCUIterator::valid Checks if current position is valid

 Description

 public APCUIterator::valid(): bool

 Checks if the current iterator position is valid.

 Parameters

 This function has no parameters.

 Return Values

 Returns true if the current iterator position is valid, otherwise false.

 See Also

 	APCUIterator::current() - Get current item

 	Iterator::valid() - Checks if current position is valid

 Componere

 Componere

	Introduction
	Installing/Configuring	Requirements
	Installation

	Componere\Abstract\Definition — The Componere\Abstract\Definition class	Componere\Abstract\Definition::addInterface — Add Interface
	Componere\Abstract\Definition::addMethod — Add Method
	Componere\Abstract\Definition::addTrait — Add Trait
	Componere\Abstract\Definition::getReflector — Reflection

	Componere\Definition — The Componere\Definition class	Componere\Definition::__construct — Definition Construction
	Componere\Definition::addConstant — Add Constant
	Componere\Definition::addProperty — Add Property
	Componere\Definition::register — Registration
	Componere\Definition::isRegistered — State Detection
	Componere\Definition::getClosure — Get Closure
	Componere\Definition::getClosures — Get Closures

	Componere\Patch — The Componere\Patch class	Componere\Patch::__construct — Patch Construction
	Componere\Patch::apply — Application
	Componere\Patch::revert — Reversal
	Componere\Patch::isApplied — State Detection
	Componere\Patch::derive — Patch Derivation
	Componere\Patch::getClosure — Get Closure
	Componere\Patch::getClosures — Get Closures

	Componere\Method — The Componere\Method class	Componere\Method::__construct — Method Construction
	Componere\Method::setPrivate — Accessibility Modification
	Componere\Method::setProtected — Accessibility Modification
	Componere\Method::setStatic — Accessibility Modification
	Componere\Method::getReflector — Reflection

	Componere\Value — The Componere\Value class	Componere\Value::__construct — Value Construction
	Componere\Value::setPrivate — Accessibility Modification
	Componere\Value::setProtected — Accessibility Modification
	Componere\Value::setStatic — Accessibility Modification
	Componere\Value::isPrivate — Accessibility Detection
	Componere\Value::isProtected — Accessibility Detection
	Componere\Value::isStatic — Accessibility Detection
	Componere\Value::hasDefault — Value Interaction

	Componere Functions	Componere\cast — Casting
	Componere\cast_by_ref — Casting

 Introduction

 Introduction

 Componere (latin, English: compose) targets production environments and provides an API for
 composition of classes, monkey patching, and casting.

 Composition:

 Componere\Definition is used to define (or redefine) a class at runtime;
 The class can then be registered, and in the case of redefinition it replaces the original class
 for as long as the Componere\Definition exists.

 public Componere\Definition::__construct(string $name)

public Componere\Definition::__construct(string $name, string $parent)

public Componere\Definition::__construct(string $name, array $interfaces)

public Componere\Definition::__construct(string $name, string $parent, array $interfaces)

 Patching:

 Componere\Patch is used to change the class of a specific instance of an object at runtime;
 Upon application the patch will remain applied for as long as the Componere\Patch exists, and can be reverted explicitly.
 public Componere\Patch::__construct(object $instance)

public Componere\Patch::__construct(object $instance, array $interfaces)

 Casting:

 Componere\ casting functions can cast among user defined compatible types;
 Where compatible means Type is sub or super to the type of object.
 Componere\cast(Type $type, $object): Type

 Componere\cast_by_ref(Type $type, $object): Type

 Installing/Configuring

 Installing/Configuring

Table of Contents
	Requirements
	Installation

 Requirements

 Requirements

 Reflection is required

 Installation

 Installation

 Componere source and releases are available on
 github

 The Componere\Abstract\Definition class

 The Componere\Abstract\Definition class

 (Componere 2 >= 2.1.0)

 Introduction

 This final abstract represents a class entry, and should not be used by the programmer.

 Class synopsis

 final
 abstract
 class Componere\Abstract\Definition

 {

 /* Methods */

 public addInterface(string $interface): Definition

public addMethod(string $name, Componere\Method $method): Definition

public addTrait(string $trait): Definition

public getReflector(): ReflectionClass

 }

Table of Contents
	Componere\Abstract\Definition::addInterface — Add Interface
	Componere\Abstract\Definition::addMethod — Add Method
	Componere\Abstract\Definition::addTrait — Add Trait
	Componere\Abstract\Definition::getReflector — Reflection

 Add Interface

 Componere\Abstract\Definition::addInterface

 (Componere 2 >= 2.1.0)
Componere\Abstract\Definition::addInterface Add Interface

 Description

 public Componere\Abstract\Definition::addInterface(string $interface): Definition

 Shall implement the given interface on the current definition

 Parameters

 	interface

 	

 The case insensitive name of an interface

 Return Values

 The current Definition

 Exceptions

 Warning

 Shall throw RuntimeException if Definition was registered

 Add Method

 Componere\Abstract\Definition::addMethod

 (Componere 2 >= 2.1.0)
Componere\Abstract\Definition::addMethod Add Method

 Description

 public Componere\Abstract\Definition::addMethod(string $name, Componere\Method $method): Definition

 Shall create or override a method on the current definition.

 Parameters

 	name

 	

 The case insensitive name for method

 	method

 	

 Componere\Method not previously added to another Definition

 Return Values

 The current Definition

 Exceptions

 Warning

 Shall throw RuntimeException if Definition was registered

 Warning

 Shall throw RuntimeException if Method was added to another Definition

 Add Trait

 Componere\Abstract\Definition::addTrait

 (Componere 2 >= 2.1.0)
Componere\Abstract\Definition::addTrait Add Trait

 Description

 public Componere\Abstract\Definition::addTrait(string $trait): Definition

 Shall use the given trait for the current definition

 Parameters

 	trait

 	

 The case insensitive name of a trait

 Return Values

 The current Definition

 Exceptions

 Warning

 Shall throw RuntimeException if Definition was registered

 Reflection

 Componere\Abstract\Definition::getReflector

 (Componere 2 >= 2.1.0)
Componere\Abstract\Definition::getReflector Reflection

 Description

 public Componere\Abstract\Definition::getReflector(): ReflectionClass

 Shall create or return a ReflectionClass

 Return Values

 A ReflectionClass for the current definition (cached)

 The Componere\Definition class

 The Componere\Definition class

 (Componere 2 >= 2.1.0)

 Introduction

 The Definition class allows the programmer to build and register a type at runtime.

 Should a Definition replace an existing class, the existing class will be restored when the Definition is destroyed.

 Class synopsis

 final
 class Componere\Definition

 extends
 Componere\Abstract\Definition

 {

 /* Constructors */

 public __construct(string $name)

public __construct(string $name, string $parent)

public __construct(string $name, array $interfaces)

public __construct(string $name, string $parent, array $interfaces)

 /* Methods */

 public addConstant(string $name, Componere\Value $value): Definition

public addProperty(string $name, Componere\Value $value): Definition

public register(): void

public isRegistered(): bool

public getClosure(string $name): Closure

public getClosures(): array

 /* Inherited methods */

 public Componere\Abstract\Definition::addInterface(string $interface): Definition

public Componere\Abstract\Definition::addMethod(string $name, Componere\Method $method): Definition

public Componere\Abstract\Definition::addTrait(string $trait): Definition

public Componere\Abstract\Definition::getReflector(): ReflectionClass

 }

Table of Contents
	Componere\Definition::__construct — Definition Construction
	Componere\Definition::addConstant — Add Constant
	Componere\Definition::addProperty — Add Property
	Componere\Definition::register — Registration
	Componere\Definition::isRegistered — State Detection
	Componere\Definition::getClosure — Get Closure
	Componere\Definition::getClosures — Get Closures

 Definition Construction

 Componere\Definition::__construct

 (Componere 2 >= 2.1.0)
Componere\Definition::__construct Definition Construction

 Description

 public Componere\Definition::__construct(string $name)

 public Componere\Definition::__construct(string $name, string $parent)

 public Componere\Definition::__construct(string $name, array $interfaces)

 public Componere\Definition::__construct(string $name, string $parent, array $interfaces)

 Parameters

 	name

 	

 A case insensitive class name

 	parent

 	

 A case insensitive class name

 	interfaces

 	

 An array of case insensitive class names

 Exceptions

 Warning

 Shall throw InvalidArgumentException if an attempt is made to replace an internal class

 Warning

 Shall throw InvalidArgumentException if an attempt is made to replace an interface

 Warning

 Shall throw InvalidArgumentException if an attempt is made to replace a trait

 Warning

 Shall throw RuntimeException if a class in interfaces cannot be found

 Warning

 Shall throw RuntimeException if an class in interfaces is not an interface

 Add Constant

 Componere\Definition::addConstant

 (Componere 2 >= 2.1.0)
Componere\Definition::addConstant Add Constant

 Description

 public Componere\Definition::addConstant(string $name, Componere\Value $value): Definition

 Shall declare a class constant on the current Definition

 Parameters

 	name

 	

 The case sensitive name for the constant

 	value

 	

 The Value for the constant, must not be undefined or static

 Return Values

 The current Definition

 Exceptions

 Warning

 Shall throw RuntimeException if Definition was registered

 Warning

 Shall throw RuntimeException if name is already declared as a constant

 Warning

 Shall throw RuntimeException if value is static

 Warning

 Shall throw RuntimeException if value is undefined

 Add Property

 Componere\Definition::addProperty

 (Componere 2 >= 2.1.0)
Componere\Definition::addProperty Add Property

 Description

 public Componere\Definition::addProperty(string $name, Componere\Value $value): Definition

 Shall declare a class property on the current Definition

 Parameters

 	name

 	

 The case sensitive name for the property

 	value

 	

 The default Value for the property

 Return Values

 The current Definition

 Exceptions

 Warning

 Shall throw RuntimeException if Definition was registered

 Warning

 Shall throw RuntimeException if name is already declared as a property

 Registration

 Componere\Definition::register

 (Componere 2 >= 2.1.0)
Componere\Definition::register Registration

 Description

 public Componere\Definition::register(): void

 Shall register the current Definition

 Exceptions

 Warning

 Shall throw RuntimeException if Definition was registered

 State Detection

 Componere\Definition::isRegistered

 (Componere 2 >= 2.1.0)
Componere\Definition::isRegistered State Detection

 Description

 public Componere\Definition::isRegistered(): bool

 Shall detect the registration state of this Definition

 Return Values

 Shall return true if this Definition is registered

 Get Closure

 Componere\Definition::getClosure

 (Componere 2 >= 2.1.0)
Componere\Definition::getClosure Get Closure

 Description

 public Componere\Definition::getClosure(string $name): Closure

 Shall return a Closure for the method specified by name

 Parameters

 	name

 	

 The case insensitive name of the method

 Return Values

 A Closure bound to the correct scope

 Exceptions

 Warning

 Shall throw RuntimeException if Definition was registered

 Warning

 Shall throw RuntimeException if name could not be found

 Get Closures

 Componere\Definition::getClosures

 (Componere 2 >= 2.1.0)
Componere\Definition::getClosures Get Closures

 Description

 public Componere\Definition::getClosures(): array

 Shall return an array of Closures

 Return Values

 Shall return all methods as an array of Closure objects bound to the correct scope

 Exceptions

 Warning

 Shall throw RuntimeException if Definition was registered

 The Componere\Patch class

 The Componere\Patch class

 (Componere 2 >= 2.1.0)

 Introduction

 The Patch class allows the programmer to change the type of an instance at runtime without registering a new Definition

 When a Patch is destroyed it is reverted, so that instances that were patched during the lifetime of the Patch are restored to their formal type.

 Class synopsis

 final
 class Componere\Patch

 extends
 Componere\Abstract\Definition

 {

 /* Constructors */

 public __construct(object $instance)

public __construct(object $instance, array $interfaces)

 /* Methods */

 public apply(): void

public revert(): void

public isApplied(): bool

public derive(object $instance): Patch

public getClosure(string $name): Closure

public getClosures(): array

 /* Inherited methods */

 public Componere\Abstract\Definition::addInterface(string $interface): Definition

public Componere\Abstract\Definition::addMethod(string $name, Componere\Method $method): Definition

public Componere\Abstract\Definition::addTrait(string $trait): Definition

public Componere\Abstract\Definition::getReflector(): ReflectionClass

 }

Table of Contents
	Componere\Patch::__construct — Patch Construction
	Componere\Patch::apply — Application
	Componere\Patch::revert — Reversal
	Componere\Patch::isApplied — State Detection
	Componere\Patch::derive — Patch Derivation
	Componere\Patch::getClosure — Get Closure
	Componere\Patch::getClosures — Get Closures

 Patch Construction

 Componere\Patch::__construct

 (Componere 2 >= 2.1.0)
Componere\Patch::__construct Patch Construction

 Description

 public Componere\Patch::__construct(object $instance)

 public Componere\Patch::__construct(object $instance, array $interfaces)

 Parameters

 	instance

 	

 The target for this Patch

 	interfaces

 	

 A case insensitive array of class names

 Exceptions

 Warning

 Shall throw RuntimeException if a class in interfaces cannot be found

 Warning

 Shall throw RuntimeException if an class in interfaces is not an interface

 Application

 Componere\Patch::apply

 (Componere 2 >= 2.1.0)
Componere\Patch::apply Application

 Description

 public Componere\Patch::apply(): void

 Shall apply the current patch

 Reversal

 Componere\Patch::revert

 (Componere 2 >= 2.1.0)
Componere\Patch::revert Reversal

 Description

 public Componere\Patch::revert(): void

 Shall revert the current patch

 State Detection

 Componere\Patch::isApplied

 (Componere 2 >= 2.1.0)
Componere\Patch::isApplied State Detection

 Description

 public Componere\Patch::isApplied(): bool

 Patch Derivation

 Componere\Patch::derive

 (Componere 2 >= 2.1.1)
Componere\Patch::derive Patch Derivation

 Description

 public Componere\Patch::derive(object $instance): Patch

 Shall derive a Patch for the given instance

 Parameters

 	instance

 	

 The target for the derived Patch

 Return Values

 Patch for instance derived from the current Patch

 Exceptions

 Warning

 Shall throw InvalidArgumentException if instance is not compatible

 Get Closure

 Componere\Patch::getClosure

 (Componere 2 >= 2.1.0)
Componere\Patch::getClosure Get Closure

 Description

 public Componere\Patch::getClosure(string $name): Closure

 Shall return a Closure for the method specified by name

 Parameters

 	name

 	

 The case insensitive name of the method

 Return Values

 A Closure bound to the correct scope and object

 Exceptions

 Warning

 Shall throw RuntimeException if name could not be found

 Get Closures

 Componere\Patch::getClosures

 (Componere 2 >= 2.1.0)
Componere\Patch::getClosures Get Closures

 Description

 public Componere\Patch::getClosures(): array

 Shall return an array of Closures

 Return Values

 Shall return all methods as an array of Closure objects bound to the correct scope and object

 The Componere\Method class

 The Componere\Method class

 (Componere 2 >= 2.1.0)

 Introduction

 A Method represents a function with modifiable accessibility flags

 Class synopsis

 final
 class Componere\Method

 {

 /* Constructor */

 public __construct(Closure $closure)

 /* Methods */

 public setPrivate(): Method

public setProtected(): Method

public setStatic(): Method

public getReflector(): ReflectionMethod

 }

Table of Contents
	Componere\Method::__construct — Method Construction
	Componere\Method::setPrivate — Accessibility Modification
	Componere\Method::setProtected — Accessibility Modification
	Componere\Method::setStatic — Accessibility Modification
	Componere\Method::getReflector — Reflection

 Method Construction

 Componere\Method::__construct

 (Componere 2 >= 2.1.0)
Componere\Method::__construct Method Construction

 Description

 public Componere\Method::__construct(Closure $closure)

 Parameters

 	closure

 	

 Accessibility Modification

 Componere\Method::setPrivate

 (Componere 2 >= 2.1.0)
Componere\Method::setPrivate Accessibility Modification

 Description

 public Componere\Method::setPrivate(): Method

 Return Values

 The current Method

 Exceptions

 Warning

 Shall throw RuntimeException if access level was previously set

 Accessibility Modification

 Componere\Method::setProtected

 (Componere 2 >= 2.1.0)
Componere\Method::setProtected Accessibility Modification

 Description

 public Componere\Method::setProtected(): Method

 Return Values

 The current Method

 Exceptions

 Warning

 Shall throw RuntimeException if access level was previously set

 Accessibility Modification

 Componere\Method::setStatic

 (Componere 2 >= 2.1.0)
Componere\Method::setStatic Accessibility Modification

 Description

 public Componere\Method::setStatic(): Method

 Return Values

 The current Method

 Reflection

 Componere\Method::getReflector

 (Componere 2 >= 2.1.0)
Componere\Method::getReflector Reflection

 Description

 public Componere\Method::getReflector(): ReflectionMethod

 Shall create or return a ReflectionMethod

 Return Values

 A ReflectionMethod for the current method (cached)

 The Componere\Value class

 The Componere\Value class

 (Componere 2 >= 2.1.0)

 Introduction

 A Value represents a PHP variable of all types, including undefined

 Class synopsis

 final
 class Componere\Value

 {

 /* Constructor */

 public __construct($default = ?)

 /* Methods */

 public setPrivate(): Value

public setProtected(): Value

public setStatic(): Value

public isPrivate(): bool

public isProtected(): bool

public isStatic(): bool

public hasDefault(): bool

 }

Table of Contents
	Componere\Value::__construct — Value Construction
	Componere\Value::setPrivate — Accessibility Modification
	Componere\Value::setProtected — Accessibility Modification
	Componere\Value::setStatic — Accessibility Modification
	Componere\Value::isPrivate — Accessibility Detection
	Componere\Value::isProtected — Accessibility Detection
	Componere\Value::isStatic — Accessibility Detection
	Componere\Value::hasDefault — Value Interaction

 Value Construction

 Componere\Value::__construct

 (Componere 2 >= 2.1.0)
Componere\Value::__construct Value Construction

 Description

 public Componere\Value::__construct($default = ?)

 Parameters

 	default

 	

 Exceptions

 Warning

 Shall throw InvalidArgumentException if default does not have a suitable value

 Accessibility Modification

 Componere\Value::setPrivate

 (Componere 2 >= 2.1.0)
Componere\Value::setPrivate Accessibility Modification

 Description

 public Componere\Value::setPrivate(): Value

 Return Values

 The current Value

 Exceptions

 Warning

 Shall throw RuntimeException if access level was previously set

 Accessibility Modification

 Componere\Value::setProtected

 (Componere 2 >= 2.1.0)
Componere\Value::setProtected Accessibility Modification

 Description

 public Componere\Value::setProtected(): Value

 Return Values

 The current Value

 Exceptions

 Warning

 Shall throw RuntimeException if access level was previously set

 Accessibility Modification

 Componere\Value::setStatic

 (Componere 2 >= 2.1.0)
Componere\Value::setStatic Accessibility Modification

 Description

 public Componere\Value::setStatic(): Value

 Return Values

 The current Value

 Accessibility Detection

 Componere\Value::isPrivate

 (Componere 2 >= 2.1.0)
Componere\Value::isPrivate Accessibility Detection

 Description

 public Componere\Value::isPrivate(): bool

 Accessibility Detection

 Componere\Value::isProtected

 (Componere 2 >= 2.1.0)
Componere\Value::isProtected Accessibility Detection

 Description

 public Componere\Value::isProtected(): bool

 Accessibility Detection

 Componere\Value::isStatic

 (Componere 2 >= 2.1.0)
Componere\Value::isStatic Accessibility Detection

 Description

 public Componere\Value::isStatic(): bool

 Value Interaction

 Componere\Value::hasDefault

 (Componere 2 >= 2.1.0)
Componere\Value::hasDefault Value Interaction

 Description

 public Componere\Value::hasDefault(): bool

 Componere Functions

 Componere Functions

Table of Contents
	Componere\cast — Casting
	Componere\cast_by_ref — Casting

 Casting

 Componere\cast

 (Componere 2 >= 2.1.2)
Componere\cast Casting

 Description

 Componere\cast(Type $type, $object): Type

 Parameters

 	type

 	

 A user defined type

 	object

 	

 An object with a user defined type compatible with Type

 Return Values

 An object of type Type, cast from object

 Errors/Exceptions

 Warning

 Shall throw InvalidArgumentException if the type of object is or is derived from an internal class

 Warning

 Shall throw InvalidArgumentException if Type is an interface

 Warning

 Shall throw InvalidArgumentException if Type is a trait

 Warning

 Shall throw InvalidArgumentException if Type is an abstract

 Warning

 Shall throw InvalidArgumentException if Type is not compatible with the type of object

 See Also

 	Componere\cast_by_ref

 Casting

 Componere\cast_by_ref

 (Componere 2 >= 2.1.2)
Componere\cast_by_ref Casting

 Description

 Componere\cast_by_ref(Type $type, $object): Type

 Parameters

 	type

 	

 A user defined type

 	object

 	

 An object with a user defined type compatible with Type

 Return Values

 An object of type Type, cast from object, where members are references to object members

 Errors/Exceptions

 Warning

 Shall throw InvalidArgumentException if the type of object is or is derived from an internal class

 Warning

 Shall throw InvalidArgumentException if Type is an interface

 Warning

 Shall throw InvalidArgumentException if Type is a trait

 Warning

 Shall throw InvalidArgumentException if Type is an abstract

 Warning

 Shall throw InvalidArgumentException if Type is not compatible with the type of object

 See Also

 	Componere\cast

 Error Handling and Logging

 Error Handling and Logging

	Introduction
	Installing/Configuring	Requirements
	Installation
	Runtime Configuration
	Resource Types

	Predefined Constants
	Examples
	Error Handling Functions	debug_backtrace — Generates a backtrace
	debug_print_backtrace — Prints a backtrace
	error_clear_last — Clear the most recent error
	error_get_last — Get the last occurred error
	error_log — Send an error message to the defined error handling routines
	error_reporting — Sets which PHP errors are reported
	restore_error_handler — Restores the previous error handler function
	restore_exception_handler — Restores the previously defined exception handler function
	set_error_handler — Sets a user-defined error handler function
	set_exception_handler — Sets a user-defined exception handler function
	trigger_error — Generates a user-level error/warning/notice message
	user_error — Alias of trigger_error

 Introduction

 Introduction

 These are functions dealing with error handling and logging. They
 allow you to define your own error handling rules, as well as modify
 the way the errors can be logged. This allows you to change and
 enhance error reporting to suit your needs.

 With the logging functions, you can send messages directly to other
 machines, to an email (or email to pager gateway!), to system logs,
 etc., so you can selectively log and monitor the most important parts
 of your applications and websites.

 The error reporting functions allow you to customize what level and
 kind of error feedback is given, ranging from simple notices to customized
 functions returned during errors.

 Installing/Configuring

 Installing/Configuring

Table of Contents
	Requirements
	Installation
	Runtime Configuration
	Resource Types

 Requirements

 Requirements

 No external libraries are needed to build this extension.

 Installation

 Installation

 There is no installation needed to use these
functions; they are part of the PHP core.

 Runtime Configuration

 Runtime Configuration

The behaviour of these functions is affected by settings in php.ini.

 Errors and Logging Configuration Options

 	Name
 	Default
 	Changeable
 	Changelog

 	error_reporting
 	NULL
 	INI_ALL
 	

 	display_errors
 	"1"
 	INI_ALL
 	

 	display_startup_errors
 	"1"
 	INI_ALL
 	
 Prior to PHP 8.0.0, the default value was "0".

 	log_errors
 	"0"
 	INI_ALL
 	

 	log_errors_max_len
 	"1024"
 	INI_ALL
 	Had no effect as of PHP 8.0.0, removed as of PHP 8.1.0.

 	ignore_repeated_errors
 	"0"
 	INI_ALL
 	

 	ignore_repeated_source
 	"0"
 	INI_ALL
 	

 	report_memleaks
 	"1"
 	INI_ALL
 	

 	track_errors
 	"0"
 	INI_ALL
 	Deprecated as of PHP 7.2.0, removed as of PHP 8.0.0.

 	html_errors
 	"1"
 	INI_ALL
 	

 	xmlrpc_errors
 	"0"
 	INI_SYSTEM
 	

 	xmlrpc_error_number
 	"0"
 	INI_ALL
 	

 	docref_root
 	""
 	INI_ALL
 	

 	docref_ext
 	""
 	INI_ALL
 	

 	error_prepend_string
 	NULL
 	INI_ALL
 	

 	error_append_string
 	NULL
 	INI_ALL
 	

 	error_log
 	NULL
 	INI_ALL
 	

 	error_log_mode
 	0o644
 	INI_ALL
 	Available as of PHP 8.2.0

 	syslog.facility
 	"LOG_USER"
 	INI_SYSTEM
 	Available as of PHP 7.3.0.

 	syslog.filter
 	"no-ctrl"
 	INI_ALL
 	Available as of PHP 7.3.0.

 	syslog.ident
 	"php"
 	INI_SYSTEM
 	Available as of PHP 7.3.0.

 For further details and definitions of the
INI_* modes, see the Where a configuration setting may be set.

 Here's a short explanation of
the configuration directives.

 	
 error_reporting
 int

 	

 Set the error reporting level. The parameter is either an integer
 representing a bit field, or named constants. The error_reporting
 levels and constants are described in
 Predefined Constants,
 and in php.ini. To set at runtime, use the
 error_reporting() function. See also the
 display_errors directive.

 The default value is E_ALL.

 Prior to PHP 8.0.0, the default value was:
 E_ALL &
 ~E_NOTICE &
 ~E_STRICT &
 ~E_DEPRECATED.
 This means diagnostics of level E_NOTICE,
 E_STRICT and E_DEPRECATED
 were not shown.

 Note:
 PHP Constants outside of PHP

 Using PHP Constants outside of PHP, like in httpd.conf,
 will have no useful meaning so in such cases the int values
 are required. And since error levels will be added over time, the maximum
 value (for E_ALL) will likely change. So in place of
 E_ALL consider using a larger value to cover all bit
 fields from now and well into the future, a numeric value like
 2147483647 (includes all errors, not just
 E_ALL).

 	
 display_errors
 string

 	

 This determines whether errors should be printed to the screen
 as part of the output or if they should be hidden from the user.

 Value "stderr" sends the errors to stderr
 instead of stdout.

 Note:

 This is a feature to support your development and should never be used
 on production systems (e.g. systems connected to the internet).

 Note:

 Although display_errors may be set at runtime (with ini_set()),
 it won't have any effect if the script has fatal errors.
 This is because the desired runtime action does not get executed.

 	
 display_startup_errors
 bool

 	

 Even when display_errors is on, errors that occur during PHP's startup
 sequence are not displayed. It's strongly recommended to keep
 display_startup_errors off, except for debugging.

 	
 log_errors
 bool

 	

 Tells whether script error messages should be logged to the
 server's error log or error_log.
 This option is thus server-specific.

 Note:

 You're strongly advised to use error logging in place of
 error displaying on production web sites.

 	
 log_errors_max_len
 int

 	

 Set the maximum length of log_errors in bytes. In
 error_log information about
 the source is added. The default is 1024 and 0 allows to not apply
 any maximum length at all.
 This length is applied to logged errors, displayed errors and also to
 $php_errormsg, but not to explicitly called functions
 such as error_log().

 When an int is used, the
value is measured in bytes. Shorthand notation, as described
in this FAQ, may also be used.

 	
 ignore_repeated_errors
 bool

 	

 Do not log repeated messages. Repeated errors must occur in the same
 file on the same line unless
 ignore_repeated_source
 is set true.

 	
 ignore_repeated_source
 bool

 	

 Ignore source of message when ignoring repeated messages. When this setting
 is On you will not log errors with repeated messages from different files or
 sourcelines.

 	
 report_memleaks
 bool

 	

 If this parameter is set to On (the default), this parameter will show a
 report of memory leaks detected by the Zend memory manager. This report
 will be sent to stderr on Posix platforms. On Windows, it will be sent
 to the debugger using OutputDebugString() and can be viewed with tools
 like DbgView.
 This parameter only has effect in a debug build and if
 error_reporting includes E_WARNING in the allowed
 list.

 	
 track_errors
 bool

 	

 If enabled, the last error message will always be present in the
 variable $php_errormsg.

 	
 html_errors
 bool

 	

 If enabled, error messages will include HTML tags. The format for HTML
 errors produces clickable messages that direct the user to a page
 describing the error or function in causing the error. These references
 are affected by
 docref_root and
 docref_ext.

 If disabled, error message will be solely plain text.

 	
 xmlrpc_errors
 bool

 	

 If enabled, turns off normal error reporting and formats errors as
 XML-RPC error message.

 	
 xmlrpc_error_number
 int

 	

 Used as the value of the XML-RPC faultCode element.

 	
 docref_root
 string

 	

 The new error format contains a reference to a page describing the error or
 function causing the error. In case of manual pages you can download the
 manual in your language and set this ini directive to the URL of your local
 copy. If your local copy of the manual can be reached by "/manual/"
 you can simply use docref_root=/manual/. Additional you have
 to set docref_ext to match the fileextensions of your copy
 docref_ext=.html. It is possible to use external
 references. For example you can use
 docref_root=http://manual/en/ or
 docref_root="http://landonize.it/?how=url&theme=classic&filter=Landon
 &url=http%3A%2F%2Fwww.php.net%2F"

 Most of the time you want the docref_root value to end with a slash "/".
 But see the second example above which does not have nor need it.

 Note:

 This is a feature to support your development since it makes it easy to
 lookup a function description. However it should never be used on
 production systems (e.g. systems connected to the internet).

 	
 docref_ext
 string

 	

 See docref_root.

 Note:

 The value of docref_ext must begin with a dot ".".

 	
 error_prepend_string
 string

 	

 String to output before an error message.
 Only used when the error message is displayed on screen. The main purpose
 is to be able to prepend additional HTML markup to the error message.

 	
 error_append_string
 string

 	

 String to output after an error message.
 Only used when the error message is displayed on screen. The main purpose
 is to be able to append additional HTML markup to the error message.

 	
 error_log
 string

 	

 Name of the file where script errors should be logged. The file should
 be writable by the web server's user. If the
 special value syslog is used, the errors
 are sent to the system logger instead. On Unix, this means
 syslog(3) and on Windows it means the event log. See also:
 syslog().
 If this directive is not set, errors are sent to the SAPI error logger.
 For example, it is an error log in Apache or stderr
 in CLI.
 See also error_log().

 	
 error_log_mode
 int

 	

 File mode for the file described set in
 error_log.

 	
 syslog.facility
 string

 	

 Specifies what type of program is logging the message.
 Only effective if error_log is set to "syslog".

 	
 syslog.filter
 string

 	

 Specifies the filter type to filter the logged messages. Allowed
 characters are passed unmodified; all others are written in their
 hexadecimal representation prefixed with \x.

 	
 all – the logged string will be split
 at newline characters, and all characters are passed unaltered

 	
 ascii – the logged string will be split
 at newline characters, and any non-printable 7-bit ASCII characters will be escaped

 	
 no-ctrl – the logged string will be split
 at newline characters, and any non-printable characters will be escaped

 	
 raw – all characters are passed to the system
 logger unaltered, without splitting at newlines (identical to PHP before 7.3)

 This setting will affect logging via error_log set to "syslog" and calls to syslog().

 Note:

 The raw filter type is available as of PHP 7.3.8 and PHP 7.4.0.

 This directive is not supported on Windows.

 	
 syslog.ident
 string

 	

 Specifies the ident string which is prepended to every message.
 Only effective if error_log is set to "syslog".

 Resource Types

 Resource Types

 This extension has no resource types defined.

 Predefined Constants

 Predefined Constants

The constants below are always available as part of the PHP core.

 Note:

 You may use these constant names in php.ini but not outside
 of PHP, like in httpd.conf, where you'd
 use the bitmask values instead.

 Errors and Logging

 	Value
 	Constant
 	Description
 	Note

 	1
 	
 E_ERROR
 (int)

 	
 Fatal run-time errors. These indicate errors that can not be
 recovered from, such as a memory allocation problem.
 Execution of the script is halted.

 	

 	2
 	
 E_WARNING
 (int)

 	
 Run-time warnings (non-fatal errors). Execution of the script is not
 halted.

 	

 	4
 	
 E_PARSE
 (int)

 	
 Compile-time parse errors. Parse errors should only be generated by
 the parser.

 	

 	8
 	
 E_NOTICE
 (int)

 	
 Run-time notices. Indicate that the script encountered something that
 could indicate an error, but could also happen in the normal course of
 running a script.

 	

 	16
 	
 E_CORE_ERROR
 (int)

 	
 Fatal errors that occur during PHP's initial startup. This is like an
 E_ERROR, except it is generated by the core of PHP.

 	

 	32
 	
 E_CORE_WARNING
 (int)

 	
 Warnings (non-fatal errors) that occur during PHP's initial startup.
 This is like an E_WARNING, except it is generated
 by the core of PHP.

 	

 	64
 	
 E_COMPILE_ERROR
 (int)

 	
 Fatal compile-time errors. This is like an E_ERROR,
 except it is generated by the Zend Scripting Engine.

 	

 	128
 	
 E_COMPILE_WARNING
 (int)

 	
 Compile-time warnings (non-fatal errors). This is like an
 E_WARNING, except it is generated by the Zend
 Scripting Engine.

 	

 	256
 	
 E_USER_ERROR
 (int)

 	
 User-generated error message. This is like an
 E_ERROR, except it is generated in PHP code by
 using the PHP function trigger_error().

 	

 	512
 	
 E_USER_WARNING
 (int)

 	
 User-generated warning message. This is like an
 E_WARNING, except it is generated in PHP code by
 using the PHP function trigger_error().

 	

 	1024
 	
 E_USER_NOTICE
 (int)

 	
 User-generated notice message. This is like an
 E_NOTICE, except it is generated in PHP code by
 using the PHP function trigger_error().

 	

 	2048
 	
 E_STRICT
 (int)

 	
 Enable to have PHP suggest changes
 to your code which will ensure the best interoperability
 and forward compatibility of your code.

 	

 	4096
 	
 E_RECOVERABLE_ERROR
 (int)

 	
 Catchable fatal error. It indicates that a probably dangerous error
 occurred, but did not leave the Engine in an unstable state. If the error
 is not caught by a user defined handle (see also
 set_error_handler()), the application aborts as it
 was an E_ERROR.

 	

 	8192
 	
 E_DEPRECATED
 (int)

 	
 Run-time notices. Enable this to receive warnings about code
 that will not work in future versions.

 	

 	16384
 	
 E_USER_DEPRECATED
 (int)

 	
 User-generated warning message. This is like an
 E_DEPRECATED, except it is generated in PHP code by
 using the PHP function trigger_error().

 	

 	32767
 	
 E_ALL
 (int)

 	
 All errors, warnings, and notices.

 	

 The above values (either numerical or symbolic) are used to build
 up a bitmask that specifies which errors to report. You can use the
 bitwise operators
 to combine these values or mask out certain types of errors. Note
 that only '|', '~', '!', '^' and '&' will be understood within
 php.ini.

 Examples

 Examples

 Below we can see an example of using the error handling capabilities in
 PHP. We define an error handling function which logs the information into
 a file (using an XML format), and e-mails the developer if a critical
 error in the logic happens.

 Example #1 Using error handling in a script

<?php
// we will do our own error handling
error_reporting(0);

// user defined error handling function
function userErrorHandler($errno, $errmsg, $filename, $linenum, $vars)
{
 // timestamp for the error entry
 $dt = date("Y-m-d H:i:s (T)");

 // define an assoc array of error string
 // in reality the only entries we should
 // consider are E_WARNING, E_NOTICE, E_USER_ERROR,
 // E_USER_WARNING and E_USER_NOTICE
 $errortype = array (
 E_ERROR => 'Error',
 E_WARNING => 'Warning',
 E_PARSE => 'Parsing Error',
 E_NOTICE => 'Notice',
 E_CORE_ERROR => 'Core Error',
 E_CORE_WARNING => 'Core Warning',
 E_COMPILE_ERROR => 'Compile Error',
 E_COMPILE_WARNING => 'Compile Warning',
 E_USER_ERROR => 'User Error',
 E_USER_WARNING => 'User Warning',
 E_USER_NOTICE => 'User Notice',
 E_STRICT => 'Runtime Notice',
 E_RECOVERABLE_ERROR => 'Catchable Fatal Error'
);
 // set of errors for which a var trace will be saved
 $user_errors = array(E_USER_ERROR, E_USER_WARNING, E_USER_NOTICE);

 $err = "<errorentry>\n";
 $err .= "\t<datetime>" . $dt . "</datetime>\n";
 $err .= "\t<errornum>" . $errno . "</errornum>\n";
 $err .= "\t<errortype>" . $errortype[$errno] . "</errortype>\n";
 $err .= "\t<errormsg>" . $errmsg . "</errormsg>\n";
 $err .= "\t<scriptname>" . $filename . "</scriptname>\n";
 $err .= "\t<scriptlinenum>" . $linenum . "</scriptlinenum>\n";

 if (in_array($errno, $user_errors)) {
 $err .= "\t<vartrace>" . wddx_serialize_value($vars, "Variables") . "</vartrace>\n";
 }
 $err .= "</errorentry>\n\n";

 // for testing
 // echo $err;

 // save to the error log, and e-mail me if there is a critical user error
 error_log($err, 3, "/usr/local/php4/error.log");
 if ($errno == E_USER_ERROR) {
 mail("phpdev@example.com", "Critical User Error", $err);
 }
}

function distance($vect1, $vect2)
{
 if (!is_array($vect1) || !is_array($vect2)) {
 trigger_error("Incorrect parameters, arrays expected", E_USER_ERROR);
 return NULL;
 }

 if (count($vect1) != count($vect2)) {
 trigger_error("Vectors need to be of the same size", E_USER_ERROR);
 return NULL;
 }

 for ($i=0; $i<count($vect1); $i++) {
 $c1 = $vect1[$i]; $c2 = $vect2[$i];
 $d = 0.0;
 if (!is_numeric($c1)) {
 trigger_error("Coordinate $i in vector 1 is not a number, using zero",
 E_USER_WARNING);
 $c1 = 0.0;
 }
 if (!is_numeric($c2)) {
 trigger_error("Coordinate $i in vector 2 is not a number, using zero",
 E_USER_WARNING);
 $c2 = 0.0;
 }
 $d += $c2*$c2 - $c1*$c1;
 }
 return sqrt($d);
}

$old_error_handler = set_error_handler("userErrorHandler");

// undefined constant, generates a warning
$t = I_AM_NOT_DEFINED;

// define some "vectors"
$a = array(2, 3, "foo");
$b = array(5.5, 4.3, -1.6);
$c = array(1, -3);

// generate a user error
$t1 = distance($c, $b) . "\n";

// generate another user error
$t2 = distance($b, "i am not an array") . "\n";

// generate a warning
$t3 = distance($a, $b) . "\n";

?>

 Error Handling Functions

 Error Handling Functions

 See Also

 See also syslog().

Table of Contents
	debug_backtrace — Generates a backtrace
	debug_print_backtrace — Prints a backtrace
	error_clear_last — Clear the most recent error
	error_get_last — Get the last occurred error
	error_log — Send an error message to the defined error handling routines
	error_reporting — Sets which PHP errors are reported
	restore_error_handler — Restores the previous error handler function
	restore_exception_handler — Restores the previously defined exception handler function
	set_error_handler — Sets a user-defined error handler function
	set_exception_handler — Sets a user-defined exception handler function
	trigger_error — Generates a user-level error/warning/notice message
	user_error — Alias of trigger_error

 Generates a backtrace

 debug_backtrace

 (PHP 4 >= 4.3.0, PHP 5, PHP 7, PHP 8)
debug_backtrace Generates a backtrace

 Description

 debug_backtrace(int $options = DEBUG_BACKTRACE_PROVIDE_OBJECT, int $limit = 0): array

 debug_backtrace() generates a PHP backtrace.

 Parameters

 	options

 	

 This parameter is a bitmask for the following options:

 debug_backtrace() options

 	DEBUG_BACKTRACE_PROVIDE_OBJECT
 	
 Whether or not to populate the "object" index.

 	DEBUG_BACKTRACE_IGNORE_ARGS
 	
 Whether or not to omit the "args" index, and thus all the function/method arguments,
 to save memory.

 Note:

 There are four possible combinations:

 debug_backtrace() options

 	debug_backtrace()
 	
 Populates both indexes

 	debug_backtrace(DEBUG_BACKTRACE_PROVIDE_OBJECT)

 	debug_backtrace(1)

 	debug_backtrace(0)
 	
 Omits index "object" and populates index "args".

 	debug_backtrace(DEBUG_BACKTRACE_IGNORE_ARGS)
 	
 Omits index "object" and index "args".

 	debug_backtrace(2)

 	debug_backtrace(DEBUG_BACKTRACE_PROVIDE_OBJECT|DEBUG_BACKTRACE_IGNORE_ARGS)
 	
 Populate index "object" and omit index "args".

 	debug_backtrace(3)

 	limit

 	

 This parameter can be used to limit the number of stack frames returned.
 By default (limit=0) it returns all stack frames.

 Return Values

 Returns an array of associative arrays. The possible returned elements
 are as follows:

 Possible returned elements from debug_backtrace()

 	Name
 	Type
 	Description

 	function
 	string
 	
 The current function name. See also
 __FUNCTION__.

 	line
 	int
 	
 The current line number. See also
 __LINE__.

 	file
 	string
 	
 The current file name. See also
 __FILE__.

 	class
 	string
 	
 The current class name. See also
 __CLASS__

 	object
 	object
 	
 The current object.

 	type
 	string
 	
 The current call type. If a method call, "->" is returned. If a static
 method call, "::" is returned. If a function call, nothing is returned.

 	args
 	array
 	
 If inside a function, this lists the functions arguments. If
 inside an included file, this lists the included file name(s).

 Examples

 Example #1 debug_backtrace() example

<?php
// filename: /tmp/a.php

function a_test($str)
{
 echo "\nHi: $str";
 var_dump(debug_backtrace());
}

a_test('friend');
?>

<?php
// filename: /tmp/b.php
include_once '/tmp/a.php';
?>

 Results similar to the following when executing
 /tmp/b.php:

Hi: friend
array(2) {
[0]=>
array(4) {
 ["file"] => string(10) "/tmp/a.php"
 ["line"] => int(10)
 ["function"] => string(6) "a_test"
 ["args"]=>
 array(1) {
 [0] => &string(6) "friend"
 }
}
[1]=>
array(4) {
 ["file"] => string(10) "/tmp/b.php"
 ["line"] => int(2)
 ["args"] =>
 array(1) {
 [0] => string(10) "/tmp/a.php"
 }
 ["function"] => string(12) "include_once"
 }
}

 See Also

 	trigger_error() - Generates a user-level error/warning/notice message

 	debug_print_backtrace() - Prints a backtrace

 Prints a backtrace

 debug_print_backtrace

 (PHP 5, PHP 7, PHP 8)
debug_print_backtrace
 Prints a backtrace

 Description

 debug_print_backtrace(int $options = 0, int $limit = 0): void

 debug_print_backtrace() prints a PHP backtrace. It
 prints the function calls, included/required files and
 eval()ed stuff.

 Parameters

 	options

 	

 This parameter is a bitmask for the following options:

 debug_print_backtrace() options

 	DEBUG_BACKTRACE_IGNORE_ARGS
 	
 Whether or not to omit the "args" index, and thus all the function/method arguments,
 to save memory.

 	limit

 	

 This parameter can be used to limit the number of stack frames printed.
 By default (limit=0) it prints all stack frames.

 Return Values

 No value is returned.

 Examples

 Example #1 debug_print_backtrace() example

<?php
// include.php file

function a() {
 b();
}

function b() {
 c();
}

function c(){
 debug_print_backtrace();
}

a();

?>

<?php
// test.php file
// this is the file you should run

include 'include.php';
?>

 The above example will output
something similar to:

#0 c() called at [/tmp/include.php:10]
#1 b() called at [/tmp/include.php:6]
#2 a() called at [/tmp/include.php:17]
#3 include(/tmp/include.php) called at [/tmp/test.php:3]

 See Also

 	debug_backtrace() - Generates a backtrace

 Clear the most recent error

 error_clear_last

 (PHP 7, PHP 8)
error_clear_last Clear the most recent error

 Description

 error_clear_last(): void

 Parameters

 This function has no parameters.

 Return Values

 Clears the most recent errors, making it unable to be retrieved with
 error_get_last().

 Examples

 Example #1 An error_clear_last() example

<?php
var_dump(error_get_last());
error_clear_last();
var_dump(error_get_last());

@$a = $b;

var_dump(error_get_last());
error_clear_last();
var_dump(error_get_last());
?>

 The above example will output
something similar to:

NULL
NULL
array(4) {
 ["type"]=>
 int(8)
 ["message"]=>
 string(21) "Undefined variable: b"
 ["file"]=>
 string(9) "%s"
 ["line"]=>
 int(6)
}
NULL

 See Also

 	Error constants

 Get the last occurred error

 error_get_last

 (PHP 5 >= 5.2.0, PHP 7, PHP 8)
error_get_last Get the last occurred error

 Description

 error_get_last(): ?array

 Gets information about the last error that occurred.

 Parameters

 This function has no parameters.

 Return Values

 Returns an associative array describing the last error with keys "type",
 "message", "file" and "line". If the error has been caused by a PHP
 internal function then the "message" begins with its name.
 Returns null if there hasn't been an error yet.

 Examples

 Example #1 An error_get_last() example

<?php
echo $a;
print_r(error_get_last());
?>

 The above example will output
something similar to:

Array
(
 [type] => 8
 [message] => Undefined variable: a
 [file] => C:\WWW\index.php
 [line] => 2
)

 See Also

 	Error constants

 	Variable $php_errormsg

 	error_clear_last() - Clear the most recent error

 	Directive display_errors

 	Directive html_errors

 	Directive xmlrpc_errors

 Send an error message to the defined error handling routines

 error_log

 (PHP 4, PHP 5, PHP 7, PHP 8)
error_log Send an error message to the defined error handling routines

 Description

